1. Uninformed Search

1.1 BES, DFS

e The classic version of DFS (according to the course) (only parents are retained -> can revisit states

multiple times, but it avoids infinite loops). This idea can also be used for BFS.
o The “optimized” versions of DFS and BFS (visited states are marked to not revisit them):

def BFS(init_state):
q = Queue()
g.push(init_state)
viz[init_state] =1

while g is not empty:
state = q.pop()

if is_final(state):
print(state)

for each neigh of state:
if is_valid(neigh) and not viz[neigh]:
viz[neigh] =1
g.push(neigh)

1.2 Uniform Cost Search (UCS)

def DFS(init_state):
s = Stack()
s.push(init_state)
viz[init_state] =1

while s is not empty:
state = s.pop()

if is_final(state):
print(state)

for each neigh of state:
if is_valid(neigh) and not viz[neigh]:
viz[neigh] =1
s.push(neigh)

e In BFS, nodes are visited based on the number of the transitions from the initial state

e In Uniform cost search, nodes are visited based on the distance from the initial state

e Ifall transitions have cost 1 => BFS = Uniform Cost Search

o Difference between Dijkstra & UCS: in Dijkstra we calculate the minimum distances between all
nodes, while in UCS we calculate the minimum distances from the initial state(s) to all nodes.
Uniform Cost Search is usually considered a version of Dijkstra’s algorithm.

def uniform_cost(init_state):

d = {}

d [init_state] = ©

pg = priorityQueue() #ordered by d
pq.insert((init_state, d[init_statel]))

while pg is not empty:

state = pg.pop() #state with the minimum d value

pq.remove(state)

if is_final(state): return reconstruct_path(state, came_from)

for each neighbor of state: #transition & validation(s)functions

if(is_valid(neighbor) and

(neighbor not in d or d[neighbor] > d[state] + dist(neighbor, state))):

d[neighbor] = d[state] + dist(neighbor, state)

came_from[neighbor] = state

pg.insert((neighbor, d[neighbor]))

return None

https://cs.stanford.edu/people/abisee/tutorial/bfsdfs.html
https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-fall-2011/resources/mit6_006f11_lec14_orig/
https://cs.stanford.edu/people/abisee/tutorial/dijkstra.html

1.3 IDDFS (Iterative Deepening Depth First Search)

e Combines the space efficiency of DFS with the fast search of states near the current state of BFS

e DFS executed in a BFS manner

def IDDFS(init_state, max_depth):
for depth from © to max_depth:
visited = []
sol = depth_limited DFS(init_state, depth, visited):
if sol is not None:
return sol
return None

def depth_limited DFS(state, depth, visited):
if is_final(state):
return state
if depth == 0:
return None

visited.add(state)
for each neighbor of state: #transition & validation(s)functions

if is_valid(neighbor) and neighbor not in visited:
res = depth_limited_DFS(neighbor, depth-1, visited)
if res is not None:
return res

return None

1.4 BKT

e Difference from DFS: no need to retain visited states to avoid loops.
e One of the most computationally expensive strategies

def BKT(partial_solution):

if (is_complete(partial_solution)): #complete = final
return partial_solution

for each solution in successors(partial_solution):
if is_valid(solution):

res = BKT(solution)
if res:
return res
return None

BKT(empty_solution)

1.5 Bidirectional Search

e The search is done starting from both the initial state and the final state(s) with an algorithm such as
BFS/DFS .

e Sometimes, it is hard to define reverse transitions to reconstruct the solution

e If BFSis used, the path determined between the initial state and a final state has minimum number of
transitions

Pseudocode using BFS (Only one final state is considered. Each BFS has associated its own queue and its
own visited vector):

def Bidirectional search(init_state, final state):

f g = Queue(); f_qg.push(init_state)
b _g = Queue(); b_g.push(final_state)
f_viz[init_state] =1
b_viz[final_state] =1

f_came_from = {}

b_came_from = {}

while not f_q.empty() and not b_qg.empty():

f_state = f_q.pop()
if(is_final(f_state) or (viz_b[f_state] == 1)):
return reconstruct_path(f_state, f_came_from, b_came_from)

for each neighbor of f_state: #direct transitions
if is_valid(neighbor) and not f_viz[neighbor]:
f _viz[neighbor] =1
f_qg.push(neighbor)
f_came_from[neighbor]=f_state

b_state = b_q.pop()
if(is_final(b_state) or (viz_f[b_state] == 1)):
return reconstruct_path(b_state, f came_from, b_came_from)

for each r_neighbor of b_state: #reverse transitions
if is_valid(r_neighbor) and not b_viz[r_neighbor]:
b_viz[r_neighbor] =1
b_qg.push(r_neighbor)
b_came_from[r_neighbor]=b_state

return None

2. Informed Search

2.1 Greedy Best First

e [Evaluate all unexplored states accessible from the current state
o Select the unexplored state closer to the goal (the heuristic value indicates the closeness to the goal).

def greedy(init_state):
pgq = priorityQueue() #ordered by heuristic value
pg.insert((init_state, heur_val(init_state)))
visited = [init_state]

while pg is not empty:
state = pq.pop() #state with the best heuristic value
pqg.remove(state)

if is_final(state):
return state
for each neighbor of state: #transition & validation(s)functions
if is_valid(neighbor) and (neighbor not in visited):
pqg.insert((neighbor, heur_val(neighbor)))
visited.add(neighbor)

return None

2.2 Hill Climbing

e Itis a trajectory method (at each step, only a single state is retained)

e Can get stuck in local optima

o Difference from Greedy: In HC we select the next state to be at least as good as the current one.
In Greedy, we can select a next state without being better than the current one.

e Multiple ways to select of the next state from the eligible neighbors: best neighbor / first neighbor
/ all neighbors in order (hillclimbing-backtracking).

e There is a debate between using: h(neighbor)>= h(current_state) or h(neighbor)> h(current_state).
The version used in the Al course is the first one. Because, of this, we could cycle infinitely as
visited states are not marked.

def HC(init_state):
state=init_state

while(not is_final(state)):
eligible neighbors = []
for each neighbor of state:
if valid(neighbor) and h(neighbor) >= h(current_state):
eligible_neighbors.push(neighbor)
if eligible_neighbors is empty:
return None
state = choose(eligible neighbors)

https://cs.stanford.edu/people/abisee/tutorial/greedy.html

2.3 Simulated Annealing

e Itis a trajectory method (at each step, only a single state is retained)

e Difference from HC: sometimes, we can go in worse states with a probability p (that decreases in
time)

e Can get stuck in local optima (but is better at escaping from local optima than HC)

def SA(init_state):
state=init_state
init temperature T

while(not stop criteria): #e.g., T>0
neighbor = random valid neighbor of state

if h(neighbor)>= h(current_state):
state = neighbor

else with probability p: #high T -> high p, low T -> low p
state = neighbor

update temperature T

2.4 Beam Search

e Modification of BFS: only best k visited states are
retained (in a beam), ordered based on the
heuristic value

o The final state should be the first in the beam (best
heuristic value)

def Beam_Search(init_state):
beam = PriorityQueue()
beam.push(init_state, h(init_state))
viz[init_state]=1

while(beam is not empty):

if is_final(beam.first()):
return beam.first()

new_beam = []
for state in beam:
for neighbor of state:
if (is_valid(neighbor) and not viz[neighbor]):
viz[neighbor]=1
new_beam.push(neighbor, h(neighbor))

beam = new_beam[:k]

2.5 A*

A* Search e Combines Uniform Cost Search + a heuristic
e At each step we consider the state S, such that the length of the
. o X path from the initial state to the goal, which passes through S, is
EESEZ§§§§§9 minimum.
Qé T = o f[S]=d[S]+ h(S) (the length of the path)
reedy

o d[S] = distance from the initial state to S (updated according
to Uniform Cost Search)
o h(S) = heuristic function approximating the distance from S
to the goal
A e To find the shortest path from an initial state, A* needs an
admissible heuristic
e “An admissible heuristic never overestimates the distance between a state and the goal.”
e A consistent heuristic satisfies: h(A) <= dist(A, B) + h(B) if B is reachable from A,
where:
o h(X) = distance from state X to the goal
o dist(X,Y) = distance between X and Y (e.g., we can consider it being the number of moves to
reach Y from X).
e A consistent heuristic is also admissible.
def A_star(init_state):
came_from = {}
bestscore = -inf #folosim bestscore pt a prelua lungimea optima a drumului

d = {}
d[init_state]
f=1{}
f[init_state] = h(init_state)

0

pg = priorityQueue() #ordered by f
pq.insert((init_state, f[init_state]))

while pg is not empty:
state = pqg.pop() #state with the minimum f value
pq.remove(state)

if is_final(state):
if bestscore < d[state]: best_score = d[state]; best_f _state = state

for each neighbor of state: #transition & validation(s)functions
if is_valid(neighbor) and
(neighbor not in d or
d[neighbor] > d[state] + dist(neighbor, state)):

d[neighbor] = d[state] + dist(neighbor, state)
f[neighbor] = d[neighbor] + h(neighbor)
came_from[neighbor] = state
pg.insert((neighbor, f[neighbor]))

return None

https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://inst.eecs.berkeley.edu/~cs188/sp23/assets/lectures/cs188-sp23-lec03.pdf

3. Algorithms’ properties

in an unexplored
region)

Alg. Always finds a Solution found | Needs to mark Advantages
solution in min. number | visited states to | Disadvantages
of transitions/ at | not revisit them
min. distance again
from the initial
state
Random X X X 1. The path towards the
(the algorithm is solution may be very long;
stopped after a (states can be states may be revisited
number of steps revisited) 2. Some search regions
and all solutions might be avoided if we
might be in an stop after a certain number
unexplored region) of transitions
optimized V4 (exception: X V4 I.In some cases, 1F can be
DFS O finit h fast even if a solution is
infinite graphs) not close to the initial state
1. Memory costly
2. May be slow even
though there is a solution
close to the initial state
optimized V4 (exception: v (minimum V4 1. Fastifa s_ol'uan is
BES e close to the initial state
infinite graphs) nb. of
o 1. Memory costly
transitions) 2. Slow if all solutions are
far away from the initial
state
itiieiid v (exceptions: v (minimum X - Cap dete;rmmg j[he/a
cost finit h dist solution with minimum
n ll‘li.e grapls,) istance) (states can be distance from the initial
negative cycles revisited) state
1. Doesn’t stop if it enters
a cycle with negative costs
on the edges
BKT v (exception: X X 1.1t dqes nqt peed to
. . (1t does not need | memorize visited states to
infinite graphs) o . e
to revisit states avoid loops (revisiting
due to the way | states)
the partial 1. Slow approach
solution is
constructed)
IDDFS X V4 V4 1. Much more memory
(the algorithm is . . efficient than BFS. Also,
(minimum nb. (overall, it . o
stopped after o g the DFS is depth limited.
. of transitions) revisits nodes,
reaching a max. but not in the
depth and all L 2. Many nodes are
solutions might be depth limited revisited as we increase
DFS procedure)

the depth.

Bidirectional If the used v 1. Sometimes it is hard to
Depends on the algorithm is .. define the reverse
used version of BFS. then v/ (two visited transitions
BFS/DFS . vectors are 2. Needs to memorize
(minimum nb. needed, one for .
o . visited states
of transitions) each side)
Greedy Best V4 X V4 1. Fast strategy
First e 2. At worst: DFS with bad
(exception: infinite hoi
araphs) choices
Hill X X X 1. Fastest strategy
Climbing (trajectory method) 1. Can get stuck in local
optima
2. Can get stuck in infinite
cycles
Simulated X X X 1. Fast strategy
Annealing (trajectory method) 2. Better at avoid local
optima than Hill Climbing,
but still can get stuck
Beam X (only a subspace | X V4 1. More time and space
Search is explored) efficient than BFS
1. Might not find a
solution
* -
A V4 v (minimum X 1. Combines advantages of
e . . Greedy Best First and
(exception: infinite | distance only if Uniform Cost Search
graphs, negative the heuristic is (states can be PLOT LOS! SeATen
1 ’ dmissibl revisited) 1. Might not be very time
cycles) admissible) and space efficient
References

1. Uninformed and informed strategies: https://www.youtube.com/watch?v=2vPTSp7Mths

2. Animations (BFS, DFS, Greedy Best First, A*): https://cs.stanford.edu/people/abisee/tutorial/
https://www.redblobgames.com/pathfinding/a-star/introduction.html

https://adrianstoll.com/post/a-star-pathfinding-algorithm-animation/

3. Implementations (A*, BFS, Greedy Best First): https://www.redblobgames.com/pathfinding/a-
star/implementation.html

4. Uninformed search strategies (advantages & disadvantages)

https://www.javatpoint.com/ai-uninformed-search-algorithms

5. Simulated Annealing pseudocode: http://www.cse.iitm.ac.in/~vplab/courses/optimization/SA SEL_SLIDES.pdf

https://profs.info.uaic.ro/~eugennc/teaching/ga/

https://www.youtube.com/watch?v=2vPTSp7Mfhs
https://cs.stanford.edu/people/abisee/tutorial/
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://adrianstoll.com/post/a-star-pathfinding-algorithm-animation/
https://www.redblobgames.com/pathfinding/a-star/implementation.html
https://www.redblobgames.com/pathfinding/a-star/implementation.html
https://www.javatpoint.com/ai-uninformed-search-algorithms
http://www.cse.iitm.ac.in/~vplab/courses/optimization/SA_SEL_SLIDES.pdf
https://profs.info.uaic.ro/~eugennc/teaching/ga/

