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1. Uninformed Search 

1.1 BFS, DFS 

• The classic version of DFS (according to the course) (only parents are retained -> can revisit states 

multiple times, but it avoids infinite loops). This idea can also be used for BFS.  

• The “optimized” versions of DFS and BFS (visited states are marked to not revisit them): 

def BFS(init_state): 
  q = Queue() 
  q.push(init_state) 
  viz[init_state] = 1 
 
  while q is not empty: 
    state = q.pop() 
 
    if is_final(state): 
       print(state)  
 

 for each neigh of state:  
       if is_valid(neigh) and not viz[neigh]: 
          viz[neigh] = 1 
          q.push(neigh)  
 

def DFS(init_state): 
  s = Stack() 
  s.push(init_state) 
  viz[init_state] = 1 
 
  while s is not empty: 
    state = s.pop() 
 
    if is_final(state): 
       print(state)  
 

 for each neigh of state:  
       if is_valid(neigh) and not viz[neigh]: 
          viz[neigh] = 1 
          s.push(neigh)  
 

1.2 Uniform Cost Search (UCS) 

• In BFS, nodes are visited based on the number of the transitions from the initial state 

• In Uniform cost search, nodes are visited based on the distance from the initial state 

• If all transitions have cost 1 => BFS = Uniform Cost Search 

• Difference between Dijkstra & UCS: in Dijkstra we calculate the minimum distances between all 

nodes, while in UCS we calculate the minimum distances from the initial state(s) to all nodes. 

Uniform Cost Search is usually considered a version of Dijkstra’s algorithm. 
def uniform_cost(init_state): 

   d = {} 

   d [init_state] = 0 

   pq = priorityQueue() #ordered by d  

   pq.insert((init_state, d[init_state])) 

 

   while pq is not empty: 

        state = pq.pop() #state with the minimum d value  

        pq.remove(state) 

        if is_final(state): return reconstruct_path(state, came_from) 

 

     for each neighbor of state: #transition & validation(s)functions 

           if(is_valid(neighbor) and  

              (neighbor not in d or d[neighbor] > d[state] + dist(neighbor, state))): 

                 

               d[neighbor] = d[state] + dist(neighbor, state)  

               came_from[neighbor] = state 

               pq.insert((neighbor, d[neighbor])) 

   return None 

https://cs.stanford.edu/people/abisee/tutorial/bfsdfs.html
https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-fall-2011/resources/mit6_006f11_lec14_orig/
https://cs.stanford.edu/people/abisee/tutorial/dijkstra.html
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1.3 IDDFS (Iterative Deepening Depth First Search) 

• Combines the space efficiency of DFS with the fast search of states near the current state of BFS 

• DFS executed in a BFS manner 

 

def IDDFS(init_state, max_depth):   

  for depth from 0 to max_depth: 

      visited = [] 

      sol = depth_limited_DFS(init_state, depth, visited): 

      if sol is not None: 

          return sol 

  return None 

 

def depth_limited_DFS(state, depth, visited):    

     if is_final(state):  

        return state  

     if depth == 0: 

        return None 

     visited.add(state) 

     for each neighbor of state: #transition & validation(s)functions 

         if is_valid(neighbor) and neighbor not in visited:   

            res = depth_limited_DFS(neighbor, depth-1, visited) 

            if res is not None: 

               return res 

      return None           

1.4 BKT 

• Difference from DFS: no need to retain visited states to avoid loops. 

• One of the most computationally expensive strategies 

def BKT(partial_solution): 

   if (is_complete(partial_solution)): #complete = final 

      return partial_solution 

 

   for each solution in successors(partial_solution): 

       if is_valid(solution): 

 

          res = BKT(solution) 

          if res: 

             return res 

   return None 

 

BKT(empty_solution) 
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1.5 Bidirectional Search 

• The search is done starting from both the initial state and the final state(s) with an algorithm such as 

BFS/DFS . 

• Sometimes, it is hard to define reverse transitions to reconstruct the solution 

• If BFS is used, the path determined between the initial state and a final state has minimum number of 

transitions 

Pseudocode using BFS (Only one final state is considered. Each BFS has associated its own queue and its 

own visited vector): 

def Bidirectional_search(init_state, final_state): 

   f_q = Queue(); f_q.push(init_state) 

   b_q = Queue(); b_q.push(final_state) 

   f_viz[init_state] = 1 

   b_viz[final_state] = 1 

   f_came_from = {} 

   b_came_from = {} 

 

   while not f_q.empty() and not b_q.empty(): 

 

         f_state = f_q.pop() 

         if(is_final(f_state) or (viz_b[f_state] == 1)): 

            return reconstruct_path(f_state, f_came_from, b_came_from) 

      

         for each neighbor of f_state: #direct transitions 

            if is_valid(neighbor) and not f_viz[neighbor]:   

               f_viz[neighbor] = 1 

               f_q.push(neighbor) 

               f_came_from[neighbor]=f_state 

 

         b_state = b_q.pop() 

         if(is_final(b_state) or (viz_f[b_state] == 1)): 

            return reconstruct_path(b_state, f_came_from, b_came_from) 

 

 

         for each r_neighbor of b_state: #reverse transitions 

            if is_valid(r_neighbor) and not b_viz[r_neighbor]:   

               b_viz[r_neighbor] = 1 

               b_q.push(r_neighbor) 

               b_came_from[r_neighbor]=b_state             

 

   return None 
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2. Informed Search 

2.1 Greedy Best First 

• Evaluate all unexplored states accessible from the current state 

• Select the unexplored state closer to the goal (the heuristic value indicates the closeness to the goal). 

 

def greedy(init_state): 

    pq = priorityQueue() #ordered by heuristic value 

    pq.insert( (init_state, heur_val(init_state)) ) 

    visited = [init_state] 

     

    while pq is not empty: 

         state = pq.pop() #state with the best heuristic value  

         pq.remove(state) 

 

         if is_final(state): 

             return state 

      for each neighbor of state: #transition & validation(s)functions 

             if is_valid(neighbor) and (neighbor not in visited): 

                pq.insert( (neighbor, heur_val(neighbor)) ) 

                visited.add(neighbor) 

 

    return None 

2.2 Hill Climbing 

• It is a trajectory method (at each step, only a single state is retained) 

• Can get stuck in local optima 

• Difference from Greedy: In HC we select the next state to be at least as good as the current one. 

In Greedy, we can select a next state without being better than the current one.  

• Multiple ways to select of the next state from the eligible neighbors: best neighbor / first neighbor 

/ all neighbors in order (hillclimbing-backtracking). 

• There is a debate between using: h(neighbor)>= h(current_state) or h(neighbor)> h(current_state). 

The version used in the AI course is the first one. Because, of this, we could cycle infinitely as 

visited states are not marked.  

def HC(init_state): 
       state=init_state  
 
    while(not is_final(state)): 
      eligible_neighbors = [] 
          for each neighbor of state: 
        if valid(neighbor) and h(neighbor) >= h(current_state): 
           eligible_neighbors.push(neighbor) 
      if eligible_neighbors is empty: 
        return None 
      state = choose(eligible_neighbors) 

            
 

https://cs.stanford.edu/people/abisee/tutorial/greedy.html
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2.3 Simulated Annealing 

• It is a trajectory method (at each step, only a single state is retained) 

• Difference from HC: sometimes, we can go in worse states with a probability p (that decreases in 

time) 

• Can get stuck in local optima (but is better at escaping from local optima than HC) 

def SA(init_state): 
       state=init_state  
    init temperature T 
 
    while(not stop criteria): #e.g., T>0 
        neighbor = random valid neighbor of state 
 
        if h(neighbor)>= h(current_state): 
           state = neighbor 
   
        else with probability p: #high T -> high p, low T -> low p 
           state = neighbor   
        
        update temperature T 
 

2.4 Beam Search 

• Modification of BFS: only best k visited states are 

retained (in a beam), ordered based on the 

heuristic value 

• The final state should be the first in the beam (best 

heuristic value) 

def Beam_Search(init_state): 
    beam = PriorityQueue() 
    beam.push(init_state, h(init_state)) 
    viz[init_state]=1 
 
    while(beam is not empty): 
 
         if is_final(beam.first()): 
               return beam.first() 
 
         new_beam = [] 
         for state in beam: 
             for neighbor of state: 
                 if (is_valid(neighbor) and not viz[neighbor]): 
                     viz[neighbor]=1 
                     new_beam.push(neighbor, h(neighbor)) 
 
         beam = new_beam[:k] 
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2.5 A* 

• Combines Uniform Cost Search + a heuristic  

• At each step we consider the state S, such that the length of the 

path from the initial state to the goal, which passes through S, is 

minimum. 

o f[S] = d[S] + h(S)  (the length of the path) 

o d[S] = distance from the initial state to S  (updated according 

to Uniform Cost Search) 

o h(S) = heuristic function approximating the distance from S 

to the goal 

•  To find the shortest path from an initial state, A* needs an 

admissible heuristic 

• “An admissible heuristic never overestimates the distance between a state and the goal.” 

• A consistent heuristic satisfies: h(A) <= dist(A, B) + h(B) if B is reachable from A, 

where:  

o h(X) = distance from state X to the goal 

o dist(X,Y) = distance between X and Y (e.g., we can consider it being the number of moves to 

reach Y from X). 

• A consistent heuristic is also admissible.  

def A_star(init_state): 

    came_from = {} 

    bestscore = -inf #folosim bestscore pt a prelua lungimea optima a drumului 

 

    d = {} 

    d[init_state] = 0 

    f = {} 

    f[init_state] = h(init_state) 

 

    pq = priorityQueue() #ordered by f  

    pq.insert((init_state, f[init_state])) 

 

    while pq is not empty: 

         state = pq.pop() #state with the minimum f value  

         pq.remove(state) 

 

         if is_final(state): 

             if bestscore < d[state]: best_score = d[state]; best_f_state = state 

 

      for each neighbor of state: #transition & validation(s)functions 

             if is_valid(neighbor) and  

               ( neighbor not in d or  

                 d[neighbor] > d[state] + dist(neighbor, state) ): 

                 

                d[neighbor] = d[state] + dist(neighbor, state)  

                f[neighbor] = d[neighbor] + h(neighbor) 

                came_from[neighbor] = state 

                pq.insert((neighbor, f[neighbor])) 

    return None 

https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://inst.eecs.berkeley.edu/~cs188/sp23/assets/lectures/cs188-sp23-lec03.pdf
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3. Algorithms’ properties 

Alg. Always finds a 

solution 

Solution found 

in min. number 

of transitions/ at 

min. distance 

from the initial 

state 

Needs to mark 

visited states to 

not revisit them 

again 

Advantages 

Disadvantages 

Random 

 

 

✘  

(the algorithm is 

stopped after a 

number of steps 

and all solutions 

might be in an 

unexplored region) 

✘ ✘  

 

(states can be 

revisited) 

1. The path towards the 

solution may be very long; 

states may be revisited 

2. Some search regions 

might be avoided if we 

stop after a certain number 

of transitions 

optimized 

DFS 
✓ (exception: 

infinite graphs) 

 

 

✘ ✓ 
1. In some cases, it can be 

fast even if a solution is 

not close to the initial state 

1. Memory costly 

2. May be slow even 

though there is a solution 

close to the initial state 
optimized 

BFS 
✓ (exception: 

infinite graphs) 

 

✓ (minimum 

nb. of 

transitions) 

✓ 
1. Fast if a solution is 

close to the initial state 

1. Memory costly 

2. Slow if all solutions are 

far away from the initial 

state 
Uniform 

cost 

 

 

✓ (exceptions: 

infinite graphs, 

negative cycles) 

✓ (minimum 

distance) 

✘  

 

(states can be 

revisited) 

1. Can determine the/a 

solution with minimum 

distance from the initial 

state 

1. Doesn’t stop if it enters 

a cycle with negative costs 

on the edges 

BKT ✓ (exception: 

infinite graphs) 

 

✘ ✘  

(it does not need 

to revisit states 

due to the way 

the partial 

solution is 

constructed ) 

1. It does not need to 

memorize visited states to 

avoid loops (revisiting 

states) 

1. Slow approach 

IDDFS 

 

 

✘  

(the algorithm is  

stopped after 

reaching a max. 

depth and all 

solutions might be 

in an unexplored 

region) 

✓  
(minimum nb. 

of transitions) 

✓ 
(overall, it 

revisits nodes, 

but not in the 

depth limited 

DFS procedure) 

1. Much more memory 

efficient than BFS. Also, 

the DFS is depth limited.  

 

2. Many nodes are 

revisited as we increase 

the depth. 
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Bidirectional   

Depends on the 

used version of 

BFS/DFS  
 

If the used 

algorithm is 

BFS, then ✓ 

(minimum nb. 

of transitions) 

✓ 
(two visited 

vectors are 

needed, one for 

each side) 

1. Sometimes it is hard to 

define the reverse 

transitions 

2. Needs to memorize 

visited states 

Greedy Best 

First 
✓  
(exception: infinite 

graphs) 

 

✘ ✓ 1. Fast strategy 

2. At worst: DFS with bad 

choices 

Hill 

Climbing 
✘  

(trajectory method) 

✘ ✘ 1. Fastest strategy 

1. Can get stuck in local 

optima 

2. Can get stuck in infinite 

cycles 

Simulated 

Annealing 
✘ 

(trajectory method) 

✘ ✘ 1. Fast strategy 

2. Better at avoid local 

optima than Hill Climbing, 

but still can get stuck 

Beam 

Search 
✘ (only a subspace 

is explored) 

✘ ✓ 
1. More time and space 

efficient than BFS 

1. Might not find a 

solution 

A* ✓  
(exception: infinite 

graphs, negative 

cycles) 

 

✓ (minimum 

distance only if 

the heuristic is 

admissible) 

✘  

 

(states can be 

revisited) 

1. Combines advantages of 

Greedy Best First and 

Uniform Cost Search 

1. Might not be very time 

and space efficient  
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