
Laura Cornei

1. Uninformed Search

1.1 BFS, DFS

• The classic version of DFS (according to the course) (only parents are retained -> can revisit states

multiple times, but it avoids infinite loops). This idea can also be used for BFS.

• The “optimized” versions of DFS and BFS (visited states are marked to not revisit them):

def BFS(init_state):
 q = Queue()
 q.push(init_state)
 viz[init_state] = 1

 while q is not empty:
 state = q.pop()

 if is_final(state):
 print(state)

 for each neigh of state:
 if is_valid(neigh) and not viz[neigh]:
 viz[neigh] = 1
 q.push(neigh)

def DFS(init_state):
 s = Stack()
 s.push(init_state)
 viz[init_state] = 1

 while s is not empty:
 state = s.pop()

 if is_final(state):
 print(state)

 for each neigh of state:
 if is_valid(neigh) and not viz[neigh]:
 viz[neigh] = 1
 s.push(neigh)

1.2 Uniform Cost Search (UCS)

• In BFS, nodes are visited based on the number of the transitions from the initial state

• In Uniform cost search, nodes are visited based on the distance from the initial state

• If all transitions have cost 1 => BFS = Uniform Cost Search

• Difference between Dijkstra & UCS: in Dijkstra we calculate the minimum distances between all

nodes, while in UCS we calculate the minimum distances from the initial state(s) to all nodes.

Uniform Cost Search is usually considered a version of Dijkstra’s algorithm.
def uniform_cost(init_state):

 d = {}

 d [init_state] = 0

 pq = priorityQueue() #ordered by d

 pq.insert((init_state, d[init_state]))

 while pq is not empty:

 state = pq.pop() #state with the minimum d value

 pq.remove(state)

 if is_final(state): return reconstruct_path(state, came_from)

 for each neighbor of state: #transition & validation(s)functions

 if(is_valid(neighbor) and

 (neighbor not in d or d[neighbor] > d[state] + dist(neighbor, state))):

 d[neighbor] = d[state] + dist(neighbor, state)

 came_from[neighbor] = state

 pq.insert((neighbor, d[neighbor]))

 return None

https://cs.stanford.edu/people/abisee/tutorial/bfsdfs.html
https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-fall-2011/resources/mit6_006f11_lec14_orig/
https://cs.stanford.edu/people/abisee/tutorial/dijkstra.html

Laura Cornei

1.3 IDDFS (Iterative Deepening Depth First Search)

• Combines the space efficiency of DFS with the fast search of states near the current state of BFS

• DFS executed in a BFS manner

def IDDFS(init_state, max_depth):

 for depth from 0 to max_depth:

 visited = []

 sol = depth_limited_DFS(init_state, depth, visited):

 if sol is not None:

 return sol

 return None

def depth_limited_DFS(state, depth, visited):

 if is_final(state):

 return state

 if depth == 0:

 return None

 visited.add(state)

 for each neighbor of state: #transition & validation(s)functions

 if is_valid(neighbor) and neighbor not in visited:

 res = depth_limited_DFS(neighbor, depth-1, visited)

 if res is not None:

 return res

 return None

1.4 BKT

• Difference from DFS: no need to retain visited states to avoid loops.

• One of the most computationally expensive strategies

def BKT(partial_solution):

 if (is_complete(partial_solution)): #complete = final

 return partial_solution

 for each solution in successors(partial_solution):

 if is_valid(solution):

 res = BKT(solution)

 if res:

 return res

 return None

BKT(empty_solution)

Laura Cornei

1.5 Bidirectional Search

• The search is done starting from both the initial state and the final state(s) with an algorithm such as

BFS/DFS .

• Sometimes, it is hard to define reverse transitions to reconstruct the solution

• If BFS is used, the path determined between the initial state and a final state has minimum number of

transitions

Pseudocode using BFS (Only one final state is considered. Each BFS has associated its own queue and its

own visited vector):

def Bidirectional_search(init_state, final_state):

 f_q = Queue(); f_q.push(init_state)

 b_q = Queue(); b_q.push(final_state)

 f_viz[init_state] = 1

 b_viz[final_state] = 1

 f_came_from = {}

 b_came_from = {}

 while not f_q.empty() and not b_q.empty():

 f_state = f_q.pop()

 if(is_final(f_state) or (viz_b[f_state] == 1)):

 return reconstruct_path(f_state, f_came_from, b_came_from)

 for each neighbor of f_state: #direct transitions

 if is_valid(neighbor) and not f_viz[neighbor]:

 f_viz[neighbor] = 1

 f_q.push(neighbor)

 f_came_from[neighbor]=f_state

 b_state = b_q.pop()

 if(is_final(b_state) or (viz_f[b_state] == 1)):

 return reconstruct_path(b_state, f_came_from, b_came_from)

 for each r_neighbor of b_state: #reverse transitions

 if is_valid(r_neighbor) and not b_viz[r_neighbor]:

 b_viz[r_neighbor] = 1

 b_q.push(r_neighbor)

 b_came_from[r_neighbor]=b_state

 return None

Laura Cornei

2. Informed Search

2.1 Greedy Best First

• Evaluate all unexplored states accessible from the current state

• Select the unexplored state closer to the goal (the heuristic value indicates the closeness to the goal).

def greedy(init_state):

 pq = priorityQueue() #ordered by heuristic value

 pq.insert((init_state, heur_val(init_state)))

 visited = [init_state]

 while pq is not empty:

 state = pq.pop() #state with the best heuristic value

 pq.remove(state)

 if is_final(state):

 return state

 for each neighbor of state: #transition & validation(s)functions

 if is_valid(neighbor) and (neighbor not in visited):

 pq.insert((neighbor, heur_val(neighbor)))

 visited.add(neighbor)

 return None

2.2 Hill Climbing

• It is a trajectory method (at each step, only a single state is retained)

• Can get stuck in local optima

• Difference from Greedy: In HC we select the next state to be at least as good as the current one.

In Greedy, we can select a next state without being better than the current one.

• Multiple ways to select of the next state from the eligible neighbors: best neighbor / first neighbor

/ all neighbors in order (hillclimbing-backtracking).

• There is a debate between using: h(neighbor)>= h(current_state) or h(neighbor)> h(current_state).

The version used in the AI course is the first one. Because, of this, we could cycle infinitely as

visited states are not marked.

def HC(init_state):
 state=init_state

 while(not is_final(state)):
 eligible_neighbors = []
 for each neighbor of state:
 if valid(neighbor) and h(neighbor) >= h(current_state):
 eligible_neighbors.push(neighbor)
 if eligible_neighbors is empty:
 return None
 state = choose(eligible_neighbors)

https://cs.stanford.edu/people/abisee/tutorial/greedy.html

Laura Cornei

2.3 Simulated Annealing

• It is a trajectory method (at each step, only a single state is retained)

• Difference from HC: sometimes, we can go in worse states with a probability p (that decreases in

time)

• Can get stuck in local optima (but is better at escaping from local optima than HC)

def SA(init_state):
 state=init_state
 init temperature T

 while(not stop criteria): #e.g., T>0
 neighbor = random valid neighbor of state

 if h(neighbor)>= h(current_state):
 state = neighbor

 else with probability p: #high T -> high p, low T -> low p
 state = neighbor

 update temperature T

2.4 Beam Search

• Modification of BFS: only best k visited states are

retained (in a beam), ordered based on the

heuristic value

• The final state should be the first in the beam (best

heuristic value)

def Beam_Search(init_state):
 beam = PriorityQueue()
 beam.push(init_state, h(init_state))
 viz[init_state]=1

 while(beam is not empty):

 if is_final(beam.first()):
 return beam.first()

 new_beam = []
 for state in beam:
 for neighbor of state:
 if (is_valid(neighbor) and not viz[neighbor]):
 viz[neighbor]=1
 new_beam.push(neighbor, h(neighbor))

 beam = new_beam[:k]

Laura Cornei

2.5 A*

• Combines Uniform Cost Search + a heuristic

• At each step we consider the state S, such that the length of the

path from the initial state to the goal, which passes through S, is

minimum.

o f[S] = d[S] + h(S) (the length of the path)

o d[S] = distance from the initial state to S (updated according

to Uniform Cost Search)

o h(S) = heuristic function approximating the distance from S

to the goal

• To find the shortest path from an initial state, A* needs an

admissible heuristic

• “An admissible heuristic never overestimates the distance between a state and the goal.”

• A consistent heuristic satisfies: h(A) <= dist(A, B) + h(B) if B is reachable from A,

where:

o h(X) = distance from state X to the goal

o dist(X,Y) = distance between X and Y (e.g., we can consider it being the number of moves to

reach Y from X).

• A consistent heuristic is also admissible.

def A_star(init_state):

 came_from = {}

 bestscore = -inf #folosim bestscore pt a prelua lungimea optima a drumului

 d = {}

 d[init_state] = 0

 f = {}

 f[init_state] = h(init_state)

 pq = priorityQueue() #ordered by f

 pq.insert((init_state, f[init_state]))

 while pq is not empty:

 state = pq.pop() #state with the minimum f value

 pq.remove(state)

 if is_final(state):

 if bestscore < d[state]: best_score = d[state]; best_f_state = state

 for each neighbor of state: #transition & validation(s)functions

 if is_valid(neighbor) and

 (neighbor not in d or

 d[neighbor] > d[state] + dist(neighbor, state)):

 d[neighbor] = d[state] + dist(neighbor, state)

 f[neighbor] = d[neighbor] + h(neighbor)

 came_from[neighbor] = state

 pq.insert((neighbor, f[neighbor]))

 return None

https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://inst.eecs.berkeley.edu/~cs188/sp23/assets/lectures/cs188-sp23-lec03.pdf

Laura Cornei

3. Algorithms’ properties

Alg. Always finds a

solution

Solution found

in min. number

of transitions/ at

min. distance

from the initial

state

Needs to mark

visited states to

not revisit them

again

Advantages

Disadvantages

Random

✘

(the algorithm is

stopped after a

number of steps

and all solutions

might be in an

unexplored region)

✘ ✘

(states can be

revisited)

1. The path towards the

solution may be very long;

states may be revisited

2. Some search regions

might be avoided if we

stop after a certain number

of transitions

optimized

DFS
✓ (exception:

infinite graphs)

✘ ✓
1. In some cases, it can be

fast even if a solution is

not close to the initial state

1. Memory costly

2. May be slow even

though there is a solution

close to the initial state
optimized

BFS
✓ (exception:

infinite graphs)

✓ (minimum

nb. of

transitions)

✓
1. Fast if a solution is

close to the initial state

1. Memory costly

2. Slow if all solutions are

far away from the initial

state
Uniform

cost

✓ (exceptions:

infinite graphs,

negative cycles)

✓ (minimum

distance)

✘

(states can be

revisited)

1. Can determine the/a

solution with minimum

distance from the initial

state

1. Doesn’t stop if it enters

a cycle with negative costs

on the edges

BKT ✓ (exception:

infinite graphs)

✘ ✘

(it does not need

to revisit states

due to the way

the partial

solution is

constructed)

1. It does not need to

memorize visited states to

avoid loops (revisiting

states)

1. Slow approach

IDDFS

✘

(the algorithm is

stopped after

reaching a max.

depth and all

solutions might be

in an unexplored

region)

✓
(minimum nb.

of transitions)

✓
(overall, it

revisits nodes,

but not in the

depth limited

DFS procedure)

1. Much more memory

efficient than BFS. Also,

the DFS is depth limited.

2. Many nodes are

revisited as we increase

the depth.

Laura Cornei

Bidirectional

Depends on the

used version of

BFS/DFS

If the used

algorithm is

BFS, then ✓

(minimum nb.

of transitions)

✓
(two visited

vectors are

needed, one for

each side)

1. Sometimes it is hard to

define the reverse

transitions

2. Needs to memorize

visited states

Greedy Best

First
✓
(exception: infinite

graphs)

✘ ✓ 1. Fast strategy

2. At worst: DFS with bad

choices

Hill

Climbing
✘

(trajectory method)

✘ ✘ 1. Fastest strategy

1. Can get stuck in local

optima

2. Can get stuck in infinite

cycles

Simulated

Annealing
✘

(trajectory method)

✘ ✘ 1. Fast strategy

2. Better at avoid local

optima than Hill Climbing,

but still can get stuck

Beam

Search
✘ (only a subspace

is explored)

✘ ✓
1. More time and space

efficient than BFS

1. Might not find a

solution

A* ✓
(exception: infinite

graphs, negative

cycles)

✓ (minimum

distance only if

the heuristic is

admissible)

✘

(states can be

revisited)

1. Combines advantages of

Greedy Best First and

Uniform Cost Search

1. Might not be very time

and space efficient

References

1. Uninformed and informed strategies: https://www.youtube.com/watch?v=2vPTSp7Mfhs

2. Animations (BFS, DFS, Greedy Best First, A*): https://cs.stanford.edu/people/abisee/tutorial/

https://www.redblobgames.com/pathfinding/a-star/introduction.html

https://adrianstoll.com/post/a-star-pathfinding-algorithm-animation/

3. Implementations (A*, BFS, Greedy Best First): https://www.redblobgames.com/pathfinding/a-

star/implementation.html

4. Uninformed search strategies (advantages & disadvantages)

https://www.javatpoint.com/ai-uninformed-search-algorithms

5. Simulated Annealing pseudocode: http://www.cse.iitm.ac.in/~vplab/courses/optimization/SA_SEL_SLIDES.pdf

https://profs.info.uaic.ro/~eugennc/teaching/ga/

https://www.youtube.com/watch?v=2vPTSp7Mfhs
https://cs.stanford.edu/people/abisee/tutorial/
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://adrianstoll.com/post/a-star-pathfinding-algorithm-animation/
https://www.redblobgames.com/pathfinding/a-star/implementation.html
https://www.redblobgames.com/pathfinding/a-star/implementation.html
https://www.javatpoint.com/ai-uninformed-search-algorithms
http://www.cse.iitm.ac.in/~vplab/courses/optimization/SA_SEL_SLIDES.pdf
https://profs.info.uaic.ro/~eugennc/teaching/ga/

