
Laura Cornei

Lab 2 & 3

1. To model a state, we should:

• indicate the positions of the values and the empty cell, as well as the neighborhood relations,

by using for example:

o a vector and a structure to retain the neighbors

OR

o a matrix

• a representation for the last moved cell (useful in: “După mutarea unei celule, ea nu mai

poate fi mutată din nou decât după ce unul din vecinii săi a fost mutat”) for example:

o the position of the last moved cell (or custom dummy values if the state is an initial

state)

2. Obs: multiple final states!

3. The transition parameters should take into account:

• the moved cell (or the moved empty cell)

• the direction of movement (up, down, right, left)

 The validation(s) should consider that:

• the moved cell can be moved in that direction

• the moved cell cannot exit the grid

• the moved cell was not previously moved (“După mutarea unei celule, ea nu mai poate fi

mutată din nou decât după ce unul din vecinii săi a fost mutat”)

4. IDDFS (Iterative Deepening Depth First Search)

• Combines the space efficiency of DFS with the fast search of states near the current state of BFS

• DFS executed in a BFS manner

Example of pseudocode:

def IDDFS(init_state, max_depth):

 for depth from 0 to max_depth:

 visited = []

 sol = depth_limited_DFS(init_state, depth, visited):

 if sol is not None:

 return sol
 return None

def depth_limited_DFS(state, depth, visited):

 if is_final(state):

 return state

 if depth == 0:

 return None

 visited.add(state)

 for each neighbor of state: #transition & validation(s)functions

 if is_valid(neighbor) and neighbor not in visited:

 res = depth_limited_DFS(neighbor, depth-1, visited)
 if res is not None:

 return res

 return None

Laura Cornei

5. Greedy (best-first):

• Evaluate all unexplored states accessible from the current state

• Select the unexplored state closer to the goal (the heuristic value indicates the closeness to the

goal).

 Examples of other heuristics: http://www.ieee.ma/uaesb/pdf/distances-in-classification.pdf

To measure the closeness between the current state and the goal, we can take into account either one

final state (e.g., the one that has the empty cell on the same position) or all the final states. To measure

closeness between a current state and all the final states we can add up/ average all heuristic scores

measuring the closeness between that current state and each final state.

 Example of pseudocode Greedy best-first:

def greedy(init_state):

 pq = priorityQueue() #ordered by heuristic value

 pq.insert((init_state, heur_val(init_state)))
 visited = [init_state]

 while pq is not empty:

 state = pq.pop() #state with the best heuristic value

 pq.remove(state)

 if is_final(state):

 return state

 for each neighbor of state: #transition & validation(s)functions

 if is_valid(neighbor) and (neighbor not in visited):

 pq.insert((neighbor, heur_val(neighbor)))

 visited.add(neighbor)

 return None

6. The solution length = number of moves made to reach that solution from the initial state

(e.g., you can use a structure to retain the “parent” of each state or just count the moves while passing

through the states)

7. A* algorithm:

• Combines Dijkstra + a heuristic

• At each step we consider the state S, such that the length of the path from the initial state to

the goal, which passes through S, is minimum.

o f[S] = d[S] + h(S) (the length of the path)

o d[S] = distance from the initial state to S (updated according to Dijkstra’s algorithm)

o h(S) = heuristic function approximating the distance from S to the goal

• To find the shortest path from an initial state, A* needs an admissible heuristic

• “An admissible heuristic never overestimates the distance between a state and the goal.”

• A consistent heuristic satisfies: h(A) <= dist(A, B) + h(B) if B is reachable from A,

http://www.ieee.ma/uaesb/pdf/distances-in-classification.pdf

Laura Cornei

where:

o h(X) = distance from state X to the goal

o dist(X,Y) = distance between X and Y (e.g., we can consider it being the number of

moves to reach Y from X). A consistent heuristic is also admissible.

General pseudocode for A*:

def A_star(init_state):

 came_from = {}

 d = {}

 d[init_state] = 0

 f = {}

 f[init_state] = h(init_state)

 pq = priorityQueue() #ordered by f

 pq.insert((init_state, f[init_state]))

 while pq is not empty:

 state = pq.pop() #state with the minimum f value

 pq.remove(state)

 if is_final(state):
 return reconstruct_path(state, came_from)

 for each neighbor of state: #transition & validation(s)functions

 if is_valid(neighbor) and

 (neighbor not in d or

 d[neighbor] > d[state] + dist(neighbor, state)):

 d[neighbor] = d[state] + dist(neighbor, state)

 f[neighbor] = d[neighbor] + h(neighbor)

 came_from[neighbor] = state

 pq.insert((neighbor, f[neighbor]))

 return None

Observation:

• The current problem contains multiple final states -> We can define the heuristic function to take

into account all the final states

Laura Cornei

Other observations:

• Incomplete solutions for a subpoint: at most 0.1 points. (example of an incomplete solution: not

taking into account the condition:“După mutarea unei celule, ea nu mai poate fi mutată din nou

decât după ce unul din vecinii săi (initiali) a fost mutat”)

• Subpoints 4,5,6,7 use the state representations and the functions from 1,2,3.

• (NEW) It will take a considerably longer time for IDDFS to reach the final state(s) if these are far

away from the initial state or if the solution does not exist.

• (NEW) Don’t forget this condition: “să se găsească, dacă există, o secvență de mutări ale

celulelor astfel încât toate să fie plasate în ordine crescătoare în matrice”, for which you have an

idea of implementation in the A* pseudocode (building a dictionary to retain the parent of each

state).

