```
1. X_{ij} = variable \ retaining \ value \ from \ cell(i,j)
   D_{ij} = domain\ of\ variable\ X_{ij} = \begin{cases} \{1,2,..9\}, & if\ the\ cell\ is\ an\ empty\ white\ cell\ \{2,4,6,8\}, & if\ the\ cell\ is\ an\ empty\ grey\ cell\ val, & if\ the\ cell\ already\ contains\ a\ value \end{cases}
    Obs: Instead of considering the domain {2,4,6,8} for empty grey cells, one can work with a domain
    of {1,2,...,9} and create the constraints that those cells should contain an even number
   R = \{ X_{i,i}! = X_{i,k} \text{ for } k! = j, 1 \le i, j, k \le 9 \}
         X_{ij}! = X_{kj} for k! = i, 1 \le i, j, k \le 9
         X_{i1j1}! = X_{i2j2} \forall (i1,j1)! = (i2,j2) \&\& (i1,j1), (i2,j2) \in square
         [X_{ij} \% 2 == 0, for(i,j) empty grey cell]
    }
2. Backtracking for CSP:
    def BKT(assignment):
         if (isComplete(assignment)):
              return assignment
         var = next_unassigned_variable(assignment)
         for value in Domain(var):
              if consistent(assignment, var, value):
                  new_assignment = assignment ∪ {var = value}
                  res = BKT(new assignment)
                  if res is not None:
                      return res
         return None
    Forward checking:
    Def BKT_with_FC(assignment, domains):
         if (isComplete(assignment)):
              return assignment
         var = next unassigned variable(assignment)
         for value in Domain(var):
              if consistent(assignment, var, value):
                  new assignment = assignment ∪ {var = value}
                  new_domains = update_domains_FC(domains, var, value)
                  if (no new_domain of an unassigned variable is empty):
                          res = BKT with FC(new assignment, new domains)
                          if res is not None:
                              return res
```

return None

When attributing a value v to a variable A, we eliminate the values w from the domains of the other variables B if assigning A = v and B = w breaks any of the restrictions.

If at one point a domain of an unassigned variable gets empty, this means there will be no solution in the future! Therefore, there is no need to go further in the Backtracking.

3. Minimum remaining values (MRV)

MRV heuristic = choose the variable with the smallest number of values remaining in its domain

```
Def BKT_with_FC_MRV(assignment, domains):
    if (isComplete(assignment)):
        return assignment

var = next_unassigned_variable_MRV(assignment, domains)
    for value in Domain(var):
        if consistent(assignment, var, value):
            new_assignment = assignment U {var = value}
            new_domains = update_domains_FC(domains, var, value)
            if (no new_domain of an unassigned variable is empty):
                res = BKT_with_FC_MRV(new_assignment, new_domains)
                if res is not None:
                      return None
```

4. Bonus: Arc Consistency

 $X \to Y$ consistent iff $\forall x \in Domain(X) \exists y \in Domain(Y)$ such that no constraints are broken

Put in Q all pairs of variables (X,Y), such that X and Y are linked via at least a constraint.

```
While (!Q.empty()):
    (X,Y) = Q.pop()
    ok = True
    for each value x ∈ Domain(X):
        if ∄y ∈ Domain(Y) such that X=x, Y=y doesn't break constraints:
            ok = False
            delete x from Domain(X)
    if(ok == 0):
        For Z in neighbors(X):
            Q.push(Z, X)
```

Final Result: Updated domains of variables.

Arc Consistency can be used as a preprocessing step before Backtracking, or inside Backtracking.

What is the complexity of arc consistency? Why? (hint: think about the maximum number of times you can insert a pair in the queue)