Lab 4

1. X;; = variable retaining value from cell(i,j)
{1,2,..9}, if the cell is an empty white cell
{2,4,6,8}, if the cell is an empty grey cell

D;: = domain of variable X;; =
Y f Y val, if the cell already contains a value

Obs: Instead of considering the domain {2,4,6,8} for empty grey cells, one can work with a domain
of {1,2,...,9} and create the constraints that those cells should contain an even number

R={X;!=Xyfork!=j, 1<i,j,k<9
X '=Xy fork!=i, 1<i,j,k<9
Xij1 ! = Xigjp ¥ (L1 ! = (i2,2) && (i1,j1), (i2,j2) € square
[Xij % 2==0,for (i,j) empty grey cell ]
}

2. Backtracking for CSP:

def BKT(assignment):
if (isComplete(assignment)):
return assignment

var = next_unassigned_variable(assignment)
for value in Domain(var):
if consistent(assignment, var, value):
new_assignment = assignment U {var = value}
res = BKT(new_assignment)
if res is not None:
return res
return None

Forward checking:
Def BKT_with_FC(assignment, domains):
if (isComplete(assignment)):
return assignment

var = next_unassigned _variable(assignment)
for value in Domain(var):
if consistent(assignment, var, value):
new_assignment = assignment U {var = value}
new_domains = update_domains FC(domains, var, value)
if (no new_domain of an unassigned variable is empty):
res = BKT_with_FC(new_assignment, new_domains)
if res is not None:
return res
return None



When attributing a value v to a variable A, we eliminate the values w from the domains of the other
variables B if assigning A = v and B = w breaks any of the restrictions.

If at one point a domain of an unassigned variable gets empty, this means there will be no solution
in the future! Therefore, there is no need to go further in the Backtracking.

3. Minimum remaining values (MRYV)
MRV heuristic = choose the variable with the smallest number of values remaining in its domain

Def BKT_with_FC_MRV(assignment, domains):
if (isComplete(assignment)):
return assignment

var = next_unassigned _variable MRV(assignment, domains)
for value in Domain(var):
if consistent(assignment, var, value):
new_assignment = assignment U {var = value}
new_domains = update_domains_FC(domains, var, value)
if (no new_domain of an unassigned variable is empty):
res = BKT_with_FC_MRV(new_assignment, new_domains)
if res is not None:
return res
return None

4. Bonus: Arc Consistency

X — 'Y consistent iff V x € Domain(X) 3 y € Domain(Y) such that no constraints are broken

Put in Q all pairs of variables (X,Y), such that X and Y are linked via at
least a constraint.

While (!Q.empty()):
(X,Y) = Q.pop()
ok = True
for each value x € Domain(X):
if Ay € Domain(Y) such that X=x, Y=y doesn’t break constraints:
ok = False
delete x from Domain(X)
if(ok == 0):
For Z in neighbors(X):
Q.push(z, X)

Final Result: Updated domains of variables.
Arc Consistency can be used as a preprocessing step before Backtracking, or
inside Backtracking.
What is the complexity of arc consistency? Why? (hint: think about the
maximum number of times you can insert a pair in the queue)



