
Laura Cornei

Lab 4

1. 𝑋𝑖𝑗 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑒𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝑐𝑒𝑙𝑙(𝑖, 𝑗)

𝐷𝑖𝑗 = 𝑑𝑜𝑚𝑎𝑖𝑛 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑋𝑖𝑗 = {

{1,2, . .9}, 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑖𝑠 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑤ℎ𝑖𝑡𝑒 𝑐𝑒𝑙𝑙
{2,4,6,8}, 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑖𝑠 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑔𝑟𝑒𝑦 𝑐𝑒𝑙𝑙
𝑣𝑎𝑙, 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑣𝑎𝑙𝑢𝑒

Obs: Instead of considering the domain {2,4,6,8} for empty grey cells, one can work with a domain

of {1,2,…,9} and create the constraints that those cells should contain an even number

𝑅 = { 𝑋𝑖𝑗 ! = 𝑋𝑖𝑘 𝑓𝑜𝑟 𝑘 ! = 𝑗, 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 9

 𝑋𝑖𝑗 ! = 𝑋𝑘𝑗 𝑓𝑜𝑟 𝑘 ! = 𝑖, 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 9

 𝑋𝑖1𝑗1 ! = 𝑋𝑖2𝑗2 ∀ (𝑖1, 𝑗1) ! = (𝑖2, 𝑗2) && (𝑖1, 𝑗1), (𝑖2, 𝑗2) ∈ 𝑠𝑞𝑢𝑎𝑟𝑒

 [𝑋𝑖𝑗 % 2 == 0, 𝑓𝑜𝑟 (𝑖, 𝑗) 𝑒𝑚𝑝𝑡𝑦 𝑔𝑟𝑒𝑦 𝑐𝑒𝑙𝑙]

 }

2. Backtracking for CSP:

def BKT(assignment):

 if (isComplete(assignment)):

 return assignment

 var = next_unassigned_variable(assignment)

 for value in Domain(var):
 if consistent(assignment, var, value):

 new_assignment = assignment ∪ {var = value}

 res = BKT(new_assignment)

 if res is not None:

 return res

 return None

Forward checking:

Def BKT_with_FC(assignment, domains):

 if (isComplete(assignment)):
 return assignment

 var = next_unassigned_variable(assignment)

 for value in Domain(var):

 if consistent(assignment, var, value):

 new_assignment = assignment ∪ {var = value}

 new_domains = update_domains_FC(domains, var, value)

 if (no new_domain of an unassigned variable is empty):

 res = BKT_with_FC(new_assignment, new_domains)

 if res is not None:

 return res
 return None

Laura Cornei

When attributing a value 𝑣 to a variable 𝐴, we eliminate the values 𝑤 from the domains of the other

variables 𝐵 if assigning 𝐴 = 𝑣 𝑎𝑛𝑑 𝐵 = 𝑤 breaks any of the restrictions.

If at one point a domain of an unassigned variable gets empty, this means there will be no solution

in the future! Therefore, there is no need to go further in the Backtracking.

3. Minimum remaining values (MRV)

MRV heuristic = choose the variable with the smallest number of values remaining in its domain

Def BKT_with_FC_MRV(assignment, domains):

 if (isComplete(assignment)):

 return assignment

 var = next_unassigned_variable_MRV(assignment, domains)
 for value in Domain(var):

 if consistent(assignment, var, value):

 new_assignment = assignment ∪ {var = value}

 new_domains = update_domains_FC(domains, var, value)

 if (no new_domain of an unassigned variable is empty):

 res = BKT_with_FC_MRV(new_assignment, new_domains)

 if res is not None:

 return res

 return None

4. Bonus: Arc Consistency

𝑋 → 𝑌 consistent iff ∀ 𝑥 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛(𝑋) ∃ 𝑦 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛(𝑌) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑛𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑎𝑟𝑒 𝑏𝑟𝑜𝑘𝑒𝑛

Put in Q all pairs of variables (X,Y), such that X and Y are linked via at
least a constraint.

 While (!Q.empty()):

 (X,Y) = Q.pop()

 ok = True

 for each value x ∈ Domain(X):

 if ∄ y ∈ Domain(Y) such that X=x, Y=y doesn’t break constraints:

 ok = False
 delete x from Domain(X)

 if(ok == 0):

 For Z in neighbors(X):

 Q.push(Z, X)

 Final Result: Updated domains of variables.
 Arc Consistency can be used as a preprocessing step before Backtracking, or

inside Backtracking.

 What is the complexity of arc consistency? Why? (hint: think about the
maximum number of times you can insert a pair in the queue)

