Lab 9 – Q-Learning

State ⇔ cell

Action $\in \{left, right, up, down\}$

Reward = $\begin{cases} INF, for \ a \ transition \ that \ ends \ in \ state \ G \\ -1, \ for \ any \ other \ transition \end{cases}$

Parameters:

- $\alpha \in (0,1)$ learning rate
- $\gamma \in (0,1)$ discount factor
- number of episodes

Initially, Q values are usually set to 0.

Initialize Q(s,a) arbitrarily

Repeat (for each episode):

Initialize $s \parallel s = \text{initial}$ state

Repeat (for each step of episode):

Choose a from s using policy derived from Q(*)Take action a, observe r, s'Update $Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)](**)$ $s \leftarrow s'$;

Until s is terminal

Q(s, a) = long term reward if we choose action a from state s and then follow the policy

(*) $\pi(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$ (or alternatively, you can use \in -greedy exploration)

