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SensorML project  

Preprocessing steps 

When training NN models, some preprocessing steps that might be helpful include: 

• Data standardization or normalization (to not treat differently the features that have values 

with a different order of magnitude or with higher/lower variances; it may also improve 

the model’s stability) 

• Creating the train & test (and maybe validation) datasets. For each type of dataset, the time 

series data should be split in pairs (𝑂𝑖, 𝑂𝑜), where: 

o  𝑂𝑖 represents a batch of consecutive observations given as input to make the 

prediction 

o  𝑂𝑜 represents the batch observations outputted by the prediction 

 

 

 

 

 

 

 

 

 

 

Hyperparameters 

Examples of hyperparameters: number of epochs, learning rate, batch size, optimizer, number of 

hidden layers, etc. 

The best model is impossible to guess … => solution: hyperparameter tuning  

Examples of hyperparameter tuning strategies: 

• Grid Search (check all combinations) 

• Random Search (check random combinations) 

 

Recurrent Neural Networks 

Why do we need them? 

For solving problems that do not work with a fixed input and/or output size. 

We could still use a traditional neural network for such problems (by considering an input layer 

with 𝑛 ∗ 𝑥 neurons, corresponding to the n observations given as input) but this is usually not 

feasible: 

https://courses.cs.washington.edu/courses/cse446/21wi/sections/04/section04.pdf
https://www.statology.org/validation-set-vs-test-set/
https://machinelearningmastery.com/hyperparameter-optimization-with-random-search-and-grid-search/
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• How large should the input size be? If it is too small, there is not enough history to learn 

from; if it is too large => the weights matrix/matrices increase(s) in size => the network 

becomes very complex => training may take a very long time. 

• Sometimes we inevitably have to deal with inputs of variables sizes (for e.g., when 

processing sentences with different lengths).  

 

Architecture of a vanilla (one-layer) RNN 

 

 

 

 

 

         

Training 

Feed forward: 

ℎ𝑡 = 𝑓1(𝑊1 ∙ 𝑘𝑡 + 𝑊1
′ ∙ ℎ𝑡−1 + 𝑏1 ) 

𝑦𝑡 = 𝑓2(𝑊2 ∙ ℎ𝑡 + 𝑏2) 

where: 

𝑘𝑡 = 𝑖𝑛𝑝𝑢𝑡/𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑔𝑖𝑣𝑒 𝑡𝑜 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑎𝑡 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑡  

ℎ𝑡 = ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑓𝑟𝑜𝑚 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑡 

𝑦𝑡 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑡  

 𝑓1, 𝑓2 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 

𝑊1, 𝑊1
′, 𝑊2, 𝑏1, 𝑏2 =  𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑎𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 𝑏𝑖𝑎𝑠𝑒𝑠 

 

Obs1: The matrices of weights and vectors of biases are shared across timestamps.  

Obs2: There are multiple input-output scenarios (e.g., some of the outputs of the network can be 

ignored –> take into account only 𝑦𝑡 for computing the error and making the backpropagation) 

Obs3: 𝑘𝑡, ℎ𝑡, 𝑦𝑡 , 𝑏1, 𝑏2 𝑎𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠; 𝑊1, 𝑊1
′, 𝑊2 𝑎𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 

 

 

𝑖𝑛𝑝𝑢𝑡 

ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 

𝑜𝑢𝑡𝑝𝑢𝑡 

𝑘1 𝑘2 𝑘𝑡 

time 

ℎ1 ℎ2 ℎ𝑡 ℎ0 

𝑦1 𝑦2 𝑦𝑡  
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Backpropagation Through Time (BTT) 

Idea:  

• The unfolded network is considered as a big feed-forward network, which takes the entire 

sequence 𝑘1𝑘2 … 𝑘𝑡 as an input.  

• The gradients are computed as in a normal backpropagation.  

• The weights and biases updates are computed for each “copy”, then aggregated (e.g., 

averaged). These final updates are applied to the weight matrices and to the bias vectors.  

Input-output scenarios 

Some of the outputs of the RNN can be ignored. Also, the network can receive one or multiple 

inputs.  

 

 

Drawbacks of RNNs 

• Backpropagation through time can be slow 

• Vanishing/exploding gradient (Long term dependencies are hard to capture) 

➔ common solution for exploding gradient: gradient clipping  

➔ common solution for vanishing gradient: using other architectures (LSTM, GRU) 

http://cs231n.stanford.edu/slides/2023/lecture_8.pdf
http://cs231n.stanford.edu/slides/2023/lecture_8.pdf
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LSTM & GRU 

LSTM 

• LSTM aims to (partially) solve the vanishing gradient problem, such that the network can 

learn better long-term dependencies => a new cell state 𝒄𝒕 is introduced to store long-

term information 

• Information can be read, erased or written from/to the cell state 

• To select what is read/erased/written, three corresponding gates are used. The gates are 

vectors with continuous values in range [0,1] (0 – closed, 1 – open). 

 
 

GRU 

 
GRUs and LSTMs have comparable performance. 

 

 

https://www.youtube.com/watch?v=0LixFSa7yts
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The Seq2seq model 

• RNNs (including variations such as LSTM and GRU) usually struggle with capturing long-

term dependencies  

• Seq2Seq (“sequence to sequence”) models are able to handle inputs and outputs of variable 

length and capture complex dependencies between input and output sequences 

• The Seq2Seq model contains two components: 

o An encoder network (usually a RNN) used to build a representation of the given 

inputs. In the example below 

o A decoder network (usually a RNN) takes the representation and generates outputs, 

one at a time 

 

Classical Seq2seq model (using two vanilla RNNs) 

 

• 𝑟𝑡 is the representation outputted by the encoder, storing all information about the given 

inputs  

•  𝑟𝑡 acts as initial hidden state (ℎ0
′ ) for the decoder  

• The decoder receives 𝑑 as an initial dummy input (that indicates the start of the generation) 

• The decoder generates an output, one at a time, using the previous hidden state and the last 

generated output 

• Disadvantage of the classical Seq2seq model: the bottle neck problem; solution: using an 

attention mechanism  

 

 

 

 

 

         

 

 

Other resources 

1. https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-

networks#overview 

2. https://profs.info.uaic.ro/~nlp/documente/C7.%20RNN-1.pdf 

3. https://profs.info.uaic.ro/~nlp/documente/C9.%20RNN-2.pdf 

4. http://cs231n.stanford.edu/slides/2023/lecture_8.pdf 

5. LSTM Training 

6. Seq2Seq model 

𝑘1 𝑘2 𝑘𝑡 

 

ℎ1 ℎ2 ℎ𝑡 ℎ0 

𝑦1 𝑦2 𝑟𝑡  

ℎ′1 ℎ′2 ℎ′𝑡′ 

d 

𝑦𝑡′ 

𝑦1 𝑦𝑡′−1 

https://nlp.stanford.edu/~johnhew/public/14-seq2seq.pdf
https://profs.info.uaic.ro/~nlp/documente/C9.%20RNN-2.pdf
https://profs.info.uaic.ro/~nlp/documente/C9.%20RNN-2.pdf
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks#overview
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks#overview
https://profs.info.uaic.ro/~nlp/documente/C7.%20RNN-1.pdf
https://profs.info.uaic.ro/~nlp/documente/C9.%20RNN-2.pdf
http://cs231n.stanford.edu/slides/2023/lecture_8.pdf
https://arunmallya.github.io/writeups/nn/lstm/
https://nlp.stanford.edu/~johnhew/public/14-seq2seq.pdf

