SensorML project

Preprocessing steps
When training NN models, some preprocessing steps that might be helpful include:

e Data standardization or normalization (to not treat differently the features that have values
with a different order of magnitude or with higher/lower variances; it may also improve
the model’s stability)

e Creating the train & test (and maybe validation) datasets. For each type of dataset, the time
series data should be split in pairs (0;, 0,), where:

o O; represents a batch of consecutive observations given as input to make the

prediction
o O, represents the batch observations outputted by the prediction

]m’:\uT #QTMES ouTPuT fﬂdj’mes
r_/_—\ r—kﬂ

Fyofa . Fix L% . L

— o T m

m 1k kool] |obsecuslioms
dosenedions | T, — [SModel | ="
[
—

OL OD

Hyperparameters

Examples of hyperparameters: number of epochs, learning rate, batch size, optimizer, number of
hidden layers, etc.

The best model is impossible to guess ... => solution: hyperparameter tuning

Examples of hyperparameter tuning strategies:

e (rid Search (check all combinations)
¢ Random Search (check random combinations)

Recurrent Neural Networks
Why do we need them?
For solving problems that do not work with a fixed input and/or output size.

We could still use a traditional neural network for such problems (by considering an input layer
with n * x neurons, corresponding to the n observations given as input) but this is usually not
feasible:

https://courses.cs.washington.edu/courses/cse446/21wi/sections/04/section04.pdf
https://www.statology.org/validation-set-vs-test-set/
https://machinelearningmastery.com/hyperparameter-optimization-with-random-search-and-grid-search/

e How large should the input size be? If it is too small, there is not enough history to learn
from; if it is too large => the weights matrix/matrices increase(s) in size => the network
becomes very complex => training may take a very long time.

e Sometimes we inevitably have to deal with inputs of variables sizes (for e.g., when
processing sentences with different lengths).

Architecture of a vanilla (one-layer) RNN

output V1 V2 Yt
t t t t
hidden state hy —» hy —» h —> h¢
t— t ¢
input ky ko v e k¢
time
Training >

Feed forward:

he = fr(Wy ke + Wi -hey +by)

ye = fa(Wz - he + by)

where:

k. = input/instance give to network at timestamp t

h; = hidden state from timestamp t

Yy: = output from timestamp t

f1, > = activation functions for the hidden and the output layer

Wi, W{, W5, by, b, = matrices of weights and vectors of biases

Obsl1: The matrices of weights and vectors of biases are shared across timestamps.

Obs2: There are multiple input-output scenarios (e.g., some of the outputs of the network can be
ignored —> take into account only y, for computing the error and making the backpropagation)

Obs3: k¢, hy, yi, by, by, are vectors; Wy, W{, W, are matrices

Backpropagation Through Time (BTT)

Idea:

e The unfolded network is considered as a big feed-forward network, which takes the entire
sequence kqk ...

e The gradients are computed as in a normal backpropagation.

e The weights and biases updates are computed for each “copy’
averaged). These final updates are applied to the weight matrices and to the bias vectors.

Input-output scenarios

Some of the outputs of the RNN can be ignored. Also, the network can receive one or multiple

inputs.

Single - Single

!
f

k; as an input.

Single - Multiple Qﬁ&'—)ﬁaé

Multiple - Single Q—> ;‘—-ﬁ
Multiple - Multiple w;’—)&lﬁﬁ%ﬁ

many to one

one to one one to many

t t

t t

i

Drawbacks of RNNs

][O0 O

i

t

many to many

e Backpropagation through time can be slow
o Vanishing/exploding gradient (Long term dependencies are hard to capture)

many to many

=» common solution for exploding gradient: gradient clipping

=» common solution for vanishing gradient: using other architectures (LSTM, GRU)

’, then aggregated (e.g.,

http://cs231n.stanford.edu/slides/2023/lecture_8.pdf
http://cs231n.stanford.edu/slides/2023/lecture_8.pdf

LSTM & GRU
LSTM

e LSTM aims to (partially) solve the vanishing gradient problem, such that the network can
learn better long-term dependencies => a new cell state c, is introduced to store long-
term information

e Information can be read, erased or written from/to the cell state

e To select what is read/erased/written, three corresponding gates are used. The gates are
vectors with continuous values in range [0,1] (0 — closed, 1 — open).

Long Short-Term Memory (LSTM)

We have a sequence of inputs x (), and we will compute a sequence of hidden states h(©) and cell states
c®. On timestep t:

Sigmoid function: all gate
Forget gate: controls what is kept vs values are between 0 and 1

forgotten, from previous cell state \ =

FO =fo|(W;htD) + U2 + b,)

Input gate: controls what parts of the

new cell content are written to cell \ . - "
i® = (W,-h<—)+Uim()+bi)
Output gate: controls what parts of
cell are output to hidden state [o(t) = (Woh(t_l) + an}(t) + bo)
New cell content: this is the new o

content to be written to the cell

All these are vectors of same length n

Cell state: erase (“forget”) some S -1 t)

content from last cell state, and write c() = tanh (Wch() 5 Ucil:(+ bC)

(“input”) some new cell content = < ~

¢ = £ 5 =1 4 50 5 g0
Hidden state: read (“output”)some | , B,®) — o) 5 tanh e® I 3
content from the cell
\ Gates are applied using element-wise
43 (or Hadamard) product: ©
GRU

A simplification over LSTMs
Eliminate the cell state (memory cell)
Replace forget (f) and input (i) gates with an update gate (2)
Introduce a reset gate (r) that modifies h{t2)

z® = g(WohED + Ux® + b))
r® = o(WhED +Ux®O +b,),

- —— reset gate ——

A® = tanh(W (r,°hED) + Ux® + b) 8

~ update gate —

h® = (1 — 2,)°htD 4 z,5h®)

I,

GRUs and LSTMs have comparable performance.

https://www.youtube.com/watch?v=0LixFSa7yts

The Seq2seq model

RNNS (including variations such as LSTM and GRU) usually struggle with capturing long-
term dependencies
Seq2Seq (“sequence to sequence”) models are able to handle inputs and outputs of variable
length and capture complex dependencies between input and output sequences
The Seq2Seq model contains two components:
o An encoder network (usually a RNN) used to build a representation of the given
inputs. In the example below
o A decoder network (usually a RNN) takes the representation and generates outputs,
one at a time

Classical Seq2seq model (using two vanilla RNNs)

17 1s the representation outputted by the encoder, storing all information about the given
inputs

1, acts as initial hidden state (hg) for the decoder

The decoder receives d as an initial dummy input (that indicates the start of the generation)
The decoder generates an output, one at a time, using the previous hidden state and the last
generated output

Disadvantage of the classical Seq2seq model: the bottle neck problem; solution: using an
attention mechanism

Tt Y1 HI Y2] Yer
T T I T l 1]
ho — hy —» hy — ...—> R h'1‘—> h'y; —» L, h's,
tood t P ot
ky k;, ke d | »n \\ Ye'-1
. 4

EMCOC\UL RNN De Qaa(eh ‘QNN

Other resources

1.

SANNANE IR

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-
networks#overview
https://profs.info.uaic.ro/~nlp/documente/C7.%20RNN-1.pdf
https://profs.info.uaic.ro/~nlp/documente/C9.%20RNN-2.pdf

http://cs23 In.stanford.edu/slides/2023/lecture_8.pdf

LSTM Training

Seq2Seq model

https://nlp.stanford.edu/~johnhew/public/14-seq2seq.pdf
https://profs.info.uaic.ro/~nlp/documente/C9.%20RNN-2.pdf
https://profs.info.uaic.ro/~nlp/documente/C9.%20RNN-2.pdf
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks#overview
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks#overview
https://profs.info.uaic.ro/~nlp/documente/C7.%20RNN-1.pdf
https://profs.info.uaic.ro/~nlp/documente/C9.%20RNN-2.pdf
http://cs231n.stanford.edu/slides/2023/lecture_8.pdf
https://arunmallya.github.io/writeups/nn/lstm/
https://nlp.stanford.edu/~johnhew/public/14-seq2seq.pdf

