Boyer-Moore - introduction

Boyer-Moore searches for the matchings of the pattern (P[0..m-1]) in the text (T[0..n-1]) at different starting positions i (just as KMP and the Naive search algorithm).
It is different because we test for the matching going on both the pattern and the portion of the text from right to left.

i = the starting position of the current possible match in the text T (i is moved from left to right)
k = the position of the currently compared character in the pattern (k is moved from right to left)

E.g.:

EAAAXABYXAAXBEAXBAAAEABEB

XAXABAEB

EAAXBAXBAAABAEBEB

EAAAXABXAAXBAXBAAABAEE

XAXAEB

w

k=2

EAAAXABXAAXBAXBAAABAEE

XAXABAEB

k=2

In case of a mismatch between the current characters in the text and in the pattern, the index i is incremented using two types of information:

1. The (= the first character from the text that didn't match) =>
2. The good suffix (= the part from the text that matched the pattern) => the good suffix rule

E.g.: &
D
\oéé,;@

i=0
+
EAAA ABXAAXBAXBAAABABEB

XAXABAEB

T
k=2

We choose to increment i by the biggest offset between the offset given by the bad character rule and the offset given by the good suffix rule

W10PatternMatching Page 1

Boyer-Moore - Bad character rule

The bad character rule tells us the offset by which to increment index i,
such that there is not a mismatch between the bad character (from the text) and the pattern.

We only keep track of:
- the position of the bad character in the text
- the occurrences of the bad character in the pattern

Heoc e e boel dorodi i tfe T
i=0 i=0
i | [
B AL “GDﬁ BXAAXBAXBAAABABB — S = o= -QD _________________
== 4=
XAXABAEB f-f-:--
2 e
[
m}@“me O& J(‘a\e EQCJ C?\Q)(q’j_m
fNV%@FﬂﬁﬂM

We move the pattern such that the last occurrence of the bad character in the pattern is alighed with the position of the bad character in the text

(uqe,<£xn‘1~*;;I§??E§7;;é§:
offien M&QS} he b()&; Rotodle i e Ted
|

If the pattern doesn't contain the bad character we move the pattern after the bad character.
(We can also say that the last occurrence of the bad character in the pattern is on position -1).

ij%e g&% Hoxocdon . fe &)?A dHovedor e E&A davader
i } + : \ll
_ e ® e — @O

ZABABAE o ___

1
k=2

If the bad character rule moves the pattern in the opposite direction (so the algorithm is regressing, not advancing),

we just move the pattern forward with one position.

i=‘fﬁc SDOIA dloredc He b@_ﬁmo&@x

‘/\F_\//J‘(j%i%e bod Raedex

O ceustemces
[Nv%eﬁﬂ#ﬂM
Preprocessing used for the bad character rule:

for (int i = 0; i < 1; ++i) {

We precompute the values for BC[O... I-1], where | = size of alphabet BC[1] = -1:
BCl[c] = the last position where character c appears in the pattern P } '
for (int i = 0; i < m; ++i) {
BC[P[i]] = 1i;
}

W10PatternMatching Page 2

Boyer-Moore - Good suffix rule
The good suffix rule tells us the offset by which to increment index i, such that the good suffix continues to be matched.

We only keep track of:
- the position of the good suffix in the text
- the occurrences of the good suffix in the pattern

e gnd 5uffx He god 54

i=0 1
i=0) i J—
ABABABAGBZABABAB , T T Ee T
#+ == AB _AB_ _AB
AEBAEBBEBAEB 111 I
; + y
k=2 | | k=2

T Smiwnces of fhe good
su‘%ix i the f\:ff‘h)m
The good suffix rule (general case):

We move the pattern such that the second to last occurrence of the good suffix in the pattern is aligned with the position of the good suffix in the text

Corner case 1:

If the pattern doesn't contain the good suffix more than once, we move the pattern to align the biggest prefix of the pattern, that is also a suffix of the good suffix.

He 80@I S x e 8004 | SU%X e 8@04 Su%x

i=0 i=0 i
_______ i=0
ABABABAABACZABABARB ’ A B e - L
Ad==== T E=====" e CTTTT e e e e ABAC
- d====
ACBABBEABAC e ABAC
] + AC_ ___._ ABAC
k=4 k=4

This can also be visualized as:

+ =0
——————— } R
——————— AB Mm-S _____ABAG______._
f=m==
ABLES _ _ _ __ ABAC ABAC . _ _ _ _ ABAC
I T I
1 k=4 "
L I
c&o‘, AR O,
Te,\gs ¢ m;x

Preprocessing to compute the good suffix rule:

We determine GS[0..m-1], where:

GS[i] = the second to last position in the pattern where P[i..m-1] appears

E.g.: i (

01 2 3 4 5 6 7 8 i 0 1 2 3 4 5 6 7 8
Pli] = A B A B A ClA B A P[i]=ABAB
Gsfi] = -6 -5 -4 -3 2 -1 '2 3 6 GS[i] = -6 -5 -4 -3 -2 -1 2 3 6
J Aok
SR

Obs: There is an index in the pattern from where the suffixes do not appear anymore in the pattern (except for the last position).

A, BA, ABA appear in the pattern more than once -> positive indices (general case)
CABA, ACABA.. etc., do not appear in the pattern more than once -> negative indices (corner case 1)

W10PatternMatching Page 3

We compute GS in 2 steps, using the prefix function f from KMP:

1. Computing the negative values for GS p@g% of We SQ#Q‘X P)'r', M A J

i =012345:6?8 for(inti=0;i,<\m;/<++i){
(- ciooi2slotas golil = fla = m =
1 = - | }
GS[i] = -6 -5 -4 -3 -2 -1 llo 1 2 {)@(84%057(%6 bi k&é@;/m_?[" _7
—— O’_. -
413 o 65 s of A erfre £t ’

f[i] = the length of the biggest border of P[0...i-1]

2. Computing the positive values for GS

i =012 3 456 7 8

R[4 = A B A C A B A B A //C\)Y\ﬁvﬂ‘i&&) for (int i = 0; 1 < m; ++i) {
glil = -10 0 1 0 1 2 3 2 3 //,'%ieunc %mcﬁom{}dik int len = h[il:

P[] = A B 4B R c m }55[“'19“] =i

nlil = 3 2 @ 2101 0 0-1 //8rteu€N€LL»

h[i] = length of the biggest prefix of P[i..m-1] that is also a suffix

GS[m-h[i]] =i (i is the second to last position where P[m-h[i] .. m-1] appears)
(GS[i] = the second to last position in the pattern where P[i..m-1] appears)

(e.g.i=0, GS[6]=0
i=1, GS[7] =1
i=2,
i=3(GS[7] = 3
i=4, GS[8] = 4

i=5, GS[9] = 5

6
7

:

i=6{GS[8]
i=7, GS[9
i=8, 8

o

W10PatternMatching Page 4

Boyer-Moore - Implementation
Algorithm:

i = the starting position of the current possible match in the text T (i is moved from left to right)
k = the number of matched characters (starting from the right side)

gf JKeme o faen't roicfed fhe wick
! Ve Mot @ ue skl fae Ramces T wsteR e pattoon.

i
k

while (k < m &% i <= n - m)

{
if (TH + 5 -1 -kl == PIn - 1 - k1) £/we the wonerd R (nthe Foﬁ%)mmr*ﬁ%ge coment &R e decd
X K;‘i . 7% wa\gﬁ:'\‘ﬁs_w
else
shiftbc = m - k- 1 - BCITH + 2 - 1 - KI1; fefie, defoewime shi g;%cga%%s %@efs
shiftgs = m - k - G5[= - kl; % {_
max(shiftbc, shiftgs); /"Mo\&‘w\e neK(Yriam OF{/Q
i //SM&QU&FCNU‘SCR ’fmf@c e
}
Lol
"T"’.'\m“ ¥ >
T o N , fuh
2 N I
7 o,
5 v,_s\
?as M-k
Explanation for (=offset given by the Bad Character rule):

We move the pattern such that the last occurrence of the bad character in the pattern is aligned with the position of the bad character in the text
OR the pattern is moved after the bad character if it isn't contained in it.
- deriiem 1]
A

BC[c] = the last position where character c appears in the pattern P (or -1 if is doesn't appear) new v -
(/%Q\DO‘A &) Comel (/@1(:“3‘1A &) Com-L
. mJ‘k o0 . m_\,k qos !
ﬁos_l* 305 1+
T o0 N PR (¢ B TN Wy MR V/- TN
¥ B A
@V) ‘\H TR General case ’B\T,\m\ 2
E —> 7
= l] ; — %ﬁ I 1 (K=o ,mo c,unfc@v\’(’ W\Q\L&UZSB
k. . ™~ w-l AN m-L
FOS m -l - \/\
hebad &) s = LK
10;_}*“\“’ LA e _ »+W\/(
. wLs
T o A l (ot /Y\Q‘
10 I | Lt 4 L ' [A 6\)
(’%@)Do‘ © Yamel
X Won o h Particular case 7 -t LA
T e bIREPY T T et Gk L -y
/ / — N ol
legT‘\l)rW\‘(’\(\q pos m--k < 0, 1L L1 (k=o ,mo er-(g/v\'(' Nfc{?ws)

q ! \

(Tow {he pottoun raght oo
e e

w-L

Explanation for shiftgs (=offset given by the Good Suffix rule)::

Good Suffix rule:

We move the pattern such that the second to last occurrence of the good suffix in the pattern is aligned with the position of the good suffix in the text
OR if the pattern doesn't contain the good suffix more than once, we move the pattern to align the biggest prefix of the pattern, that is also a suffix of the good suffix

GS[i] = the second to last position in the pattern where P[i..m-1] appears

(GS[m-k] = the second to last position in the pattern where P[m-k..m-1] appears)

W10PatternMatching Page 5

Boyer Moore - Implementation (drawings)

LK
(A .
,?:h u\)t)% (emn-=4
T A ! V(

+

= ‘%sza M\%{K

?ﬁgGszv\»k} X i.\ N : s of Dast

3 101 _'\Almu B Hwice i
P, .- ‘{'@\6@’(400‘/\,
?05 W]»I:K k& ? (positive GS value)
FQS‘\M‘K
X
{\km’\’ .
PO . ?05 +M-L
T ik =
- He— e —
X hton ’%E 3303 6&%
3 o oy LS S S S—

ﬂem@ mx?i one
¥ \ nthe {)O:H
?Ds Mo
'Foa m/’rk L R ((,%\me)t C&R)

(negative GS value)

W10PatternMatching Page 6

/@s\"‘“@
w2 ™ v
r(\”A\/ %‘\J('“\’
PO Tgs +m-L
Y, + J/4 H
waswiﬂn
|
19| \‘I\le"n\ A
—_—" 7
Bn @sim-] pos M- & pos M-t
)craS.vv\—K
K (:PS \J(WYK
. A~
|)
QDS ?0514(m-L
O ;L &1 \/(0
s - i :
RV\K]J“ ‘t
Koo @ g o |
(2 | Yo ety ML S
4 \
Fﬁm“tk K A o3 W~
FQS,W\/K

