Pattern matching - Introduction

0. Defining the pattern matching problem

Input: T[0..n-1] (a text, with n symbols)
P[0..m-1] (a pattern, with m symbols)
Output: i, such that T[i..i+m-1] ==
or -1, if such i1 does not exist

1. Naive Search algorithm

i = the starting position of the current possible match in the text T
k = the position of the currently compared character in the pattern (and also = the number of characters that have been matched)

int naive(char *T, int n, char *P, int m)
{
for (int i = 0; i < n - m + 1; ++i) {
bool found = true;
for (int k = 0; k < m; ++k) {
if (P[k] '= T[i + k]) {
found = false;
break;
}
}
if (found) {
return i;
}
}
return -1;

}

Worst case complexity: O((n+m)~2)

W9PatternMatching Page 1

Pattern matching - KMP part 1

2. KMP (Knuth-Morris-Pratt) algorithm

KMP: optimizes the Naive Search Algorithm.

Worst case complexity: O(n+m)

2.1 General idea: use the information of the current matching of the first characters in the pattern with the text to:

1. move the pattern further (usually with more than one position) in case of a mismatch (= Update i smartly)
2 start the comparison by skipping the characters that we already know that are equal (= Update k smartly)

i = the starting position of the current possible match in the text T
k = the position of the currently compared character in the pattern (and also = the number of characters that have been matched)

(i+k = the position of the currently compared character in the text)

TEXT -

pattern =

=7 K=9 | HKEd

012345678901 B Ikbte
HIABABXABABXABABY

NERURRRNE:
ABABXABABY

0123456789

W9PatternMatching Page 2

ko

Naive Search

(shifts the pattern with one
position in case of a mismatch)

K=l
KMP -

(we use the information known about

the currently matched characters to move the pattern
more and avoid future mismatches)

1 +K=3
TEXT =
pattern =

=7

TEXT =

patt ern =

0122456728 0112.. .

X
ABABXABAB?

012345678904 L...

77ABABXABAB777777
Iz
ABABXABAB?
0123456789

Pattern matching - KMP part 2

2.2 How to update indices k and i in KMP

We will call the portion of the currently matched string 'overlap' (in our case: ABABXABAB).
Only using the information given by the overlap, we can find the smallest shift that we can make to ensure that there is a chance of match.

i = 3: { =B (::7— 5([@)(07?’1‘6@0\2)(60]0 (&@nogfwigf%e{@d')
TEXT = 77ABABXABAB7?77777 TEXT = T7ABABXABAB?77777 -
TEXT = 77ABABXABAB?77777
pattern = ABXABAB? pattern = BABXABAB? L1
pattern = ABABXABAE?
1= 4: i=6:
TEXT = 77ABABXMBAB777777 TEXT = 77ABARXABAB?77777 }m)(Of’\Lﬁﬁow(—%? (QQCN\ as ?g)d’gf‘ﬁ?e TciH’@l/ﬂ)
I
pattern = ABAEBXABAB? pattern = ABXABAB?

Border of a string = a string of characters that is both a suffix and a prefix of the string

. . CQ/“JHRm ‘r\eceﬁdg
A string can have multiple borders (for e.g. the overlapX has borders AB and ABAB) 'fé Thoue. % “
—A—

In case of a mismatch, we can shift the pattern (without skipping any matchings) such that we have a match for the largest border of the overlap (different from the entire string).

Let f[k] = the length of the biggest border of the prefix of length k of the pattern (P[0...k-1]) [e3 Sm@?@i W
(f = prefix/failure function) CQQ’QA role o 5{(‘? sowe W’tﬁﬂs
In case of a mismatch (T[i+k]!=P[k]), we make the updates: A »AA X—AB%

P=i+k-fk] AB B X ARRD

k = f[k]

‘wk'i\‘{\
(L LI)X

? k-r"#‘-(l\ ”'hi&—‘hi' J

011 W ww ke

[NGE—;
9 e,s*\%ﬁ%’_/’
23 fo X1}
gé@
.\c'*t’ mgw}+k=o€a[}+1<
e 2 (
T [~ =y |
[
? - .
© 4 -- E‘J*Q
mewk < K]

2.3 Code for KMP

int i = 0;
i;aiclz :10; o mamk<m //145 {?mgqykﬂmoxesﬂee ?M&Pe wo%&ns(ic-m—m)amiufu%mlééé«;vsf
ifkg;[i + k] == P[k]) { I 4§ Hhe civert R, im et pociounorte epust | go Rouuated fay&‘fs“q(‘l,%,, g &
} else it ik =0 { //(yrﬁmw‘ue)iffﬁe%cﬁism&%%@e\m&% Wa%‘wﬁlpm
’ :ljei{+ k - f[k]; Il im e SR coses ""ﬁ*"“‘s“*d&’ufoua SWJ(% ok inddas
} k = £0Kl;
gz 1 e Soue e vt of Hhe oriive jeboon, eforn fhe shadpuifn of e
’ i:nf -1; Vofﬁe«w\&c(mo wrateh WS:?O"““J
}

‘W9PatternMatching Page 3

Pattern matching - KMP part 3

2.4 Computing the failure function f
f[k] = the length of the biggest border of P[0...k-1]

The failure function f can be computed using previous values as follows:

f[0] = -1;

for(i=1;i<m;i++){
k = f[i-1];
while(k >= 0 && P[k] != P[i-1]){
k = f[k];
}
if (k==-1){
fli] = 0;
} else {
flil=k + 1;
}

W9PatternMatching Page 4

W9PatternMatching Page 5

Pattern matching - Rabin Karp

3. Rabin-Karp algorithm

Worst case complexity: O((n+m)”2)
Average case complexity: almost linear

3.1. General idea

We compute a hash for the pattern and hashes for all substrings (possible matches) from the text of the same size as the pattern.
The hash function fq receives as input a string and outputs a hash (a number in range {0,1,..,g-1}).
If the pattern has the same hash as a substring in the text, it is likely that they are equal (but we have to check this explicitly to make sure).

B @T(o..f’\“]) (tl2.mez]) (T{m=wm, m<J)
‘? {ﬁhit.m3>

|
Rlo.
Obs1: f"((Mﬂ)

To calculate the hash function for a string S:
- we first need to assign each character S[i] in the string a number (for e.g., we can use consecutive numbers starting from 0
or the ASCII code)
- we encode the number formed by the string in a certain base (for e.g., in base 26)
- we take modulo g out of the finally resulted number (to ensure that we avoid operations on very large numbers and attain a good complexity)

onoerm A 2o >
34
<=2

Obs2: x =23

We can calculate a hash of a text substring T[i+1 ..i+m] using the hash of the previous text substring T[i..i+m-1] in O(1).

An example: £p(BABX) = (122674 O w2 g™ (k2 + a3 200D 7p = (%25{,5 (

el - LIENA | rfam

)(n \
(=11 -z;“> (+T5g+vn3>

// Algoritmul Rabin-Karp
q = 23; // exemplu, poate fi orice numir prim

fq(s)

‘ result = 0; W\QMMM

for i = O,m-1:
result = (result = 26 + S[i]l) % q
return result;

}
x = £q(P[0..m~1 9'089\ fue o, i
s sarto. ot 4 ot vl ,?;}@,e ot scbshirg.

for i = O,n-m:

ifi};’ ;-[U’.(.mfl] == T[i..i+tm-1] // (%) WQ,'(\eQJ('Fo MQ&{)&(&P& \,? ’%e SubS}ﬂl:‘gS e fm‘% d@wﬁwe A
y = :;nfnql- (T0) » 267a-10) % @ + 26 + Thiem)) % a /oo wuufale gﬁ(ﬂ (vl ‘”“AD UWU’X %f’\t\g‘ ---Hm’(l>
return -1

4. References & other resources

2023 lecture for Pattern Matching (https://sites.google.com/view/fii-pa/2023/lectures) - for more examples & explanations regarding the algorithms and their time complexity
TrulyUnderstandingAlgorithms YouTube channel (https://www.youtube.com/@TrulyUnderstandingAlgorithms/videos) - additional explanations for KMP

'W9PatternMatching Page 6

https://sites.google.com/view/fii-pa/2023/lectures
https://www.youtube.com/@TrulyUnderstandingAlgorithms/videos

