
Defining the pattern matching problem0.

Input: T[0..n-1] (a text, with n symbols)

 P[0..m-1] (a pattern, with m symbols)
 Output: i, such that T[i..i+m-1] == P

 or -1, if such i does not exist

1. Naive Search algorithm

 i = the starting position of the current possible match in the text T
 k = the position of the currently compared character in the pattern (and also = the number of characters that have been matched)

Worst case complexity: O((n+m)^2)

Pattern matching - Introduction

 W9PatternMatching Page 1

KMP (Knuth-Morris-Pratt) algorithm2.

KMP: optimizes the Naive Search Algorithm.

Worst case complexity: O(n+m)

2.1 General idea: use the information of the current matching of the first characters in the pattern with the text to:

1. move the pattern further (usually with more than one position) in case of a mismatch (= Update i smartly)
2 start the comparison by skipping the characters that we already know that are equal (= Update k smartly)

 i = the starting position of the current possible match in the text T
 k = the position of the currently compared character in the pattern (and also = the number of characters that have been matched)

 (i+k = the position of the currently compared character in the text)

KMP
(we use the information known about
the currently matched characters to move the pattern
more and avoid future mismatches)

Naive Search
(shifts the pattern with one
position in case of a mismatch)

Pattern matching - KMP part 1

 W9PatternMatching Page 2

2.2 How to update indices k and i in KMP

We will call the portion of the currently matched string 'overlap' (in our case: ABABXABAB).
Only using the information given by the overlap, we can find the smallest shift that we can make to ensure that there is a chance of match.

Border of a string = a string of characters that is both a suffix and a prefix of the string

A string can have multiple borders (for e.g. the overlap ABABXABAB has borders AB and ABAB)

In case of a mismatch, we can shift the pattern (without skipping any matchings) such that we have a match for the largest border of the overlap (different from the entire string).

Let f[k] = the length of the biggest border of the prefix of length k of the pattern (P[0…k-1])
(f = prefix/failure function)

In case of a mismatch (T[i+k]!=P[k]), we make the updates:

i = i + k - f[k]
k = f[k]

2.3 Code for KMP

Pattern matching - KMP part 2

 W9PatternMatching Page 3

2.4 Computing the failure function f

f[k] = the length of the biggest border of P[0…k-1]

The failure function f can be computed using previous values as follows:

f[0] = -1;

for(i = 1; i < m; i++){
 k = f[i-1];
 while(k >= 0 && P[k] != P[i-1]){
 k = f[k];
 }
 if (k== -1){
 f[i] = 0;
 } else {
 f[i] = k + 1;
 }

}

Pattern matching - KMP part 3

 W9PatternMatching Page 4

 W9PatternMatching Page 5

3. Rabin-Karp algorithm

Worst case complexity: O((n+m)^2)
Average case complexity: almost linear

3.1. General idea

We compute a hash for the pattern and hashes for all substrings (possible matches) from the text of the same size as the pattern.
The hash function fq receives as input a string and outputs a hash (a number in range {0,1,..,q-1}).
If the pattern has the same hash as a substring in the text, it is likely that they are equal (but we have to check this explicitly to make sure).

Obs1:

To calculate the hash function for a string S:
 - we first need to assign each character S[i] in the string a number (for e.g., we can use consecutive numbers starting from 0
 or the ASCII code)
 - we encode the number formed by the string in a certain base (for e.g., in base 26)
 - we take modulo q out of the finally resulted number (to ensure that we avoid operations on very large numbers and attain a good complexity)

An example:

Obs2:
We can calculate a hash of a text substring T[i+1 ..i+m] using the hash of the previous text substring T[i..i+m-1] in O(1).

4. References & other resources

2023 lecture for Pattern Matching (https://sites.google.com/view/fii-pa/2023/lectures) - for more examples & explanations regarding the algorithms and their time complexity
TrulyUnderstandingAlgorithms YouTube channel (https://www.youtube.com/@TrulyUnderstandingAlgorithms/videos) - additional explanations for KMP

Pattern matching - Rabin Karp

 W9PatternMatching Page 6

https://sites.google.com/view/fii-pa/2023/lectures
https://www.youtube.com/@TrulyUnderstandingAlgorithms/videos

