
UNIVERSITATEA ”ALEXANDRU-IOAN CUZA” DIN IAS, I

FACULTATEA DE INFORMATICĂ

LUCRARE DE DISERTAT, IE

Unsupervised text feature selection using

NSGA II with Hill Climbing local search

propusă de

Laura-Maria Cornei

Sesiunea: iunie, 2023

Coordonatori s, tiint, ifici

Lect. Dr. Croitoru Eugen, Conf. Dr. Breabăn Mihaela

UNIVERSITATEA ”ALEXANDRU-IOAN CUZA” DIN IAS, I

FACULTATEA DE INFORMATICĂ

Unsupervised text feature selection

using NSGA II with Hill Climbing

local search

Laura-Maria Cornei

Sesiunea: iunie, 2023

Coordonatori s, tiint, ifici

Lect. Dr. Croitoru Eugen, Conf. Dr. Breabăn Mihaela

Table of Contents

Introduction 2

1 Related work 5

1.1 Nature inspired methods for solving the text feature selection task . . . 5

1.1.1 Review of nature inspired techniques for addressing the text fea-

ture selection problem . 5

1.1.2 Our contribution . 7

1.2 Methods and strategies for parallelizing NSGA-II and GA evolutionary

techniques . 7

1.2.1 Classic models of parallelization for Genetic Algorithms 8

1.2.2 Review of parallel computing techniques for GA and NSGA II . . 9

1.2.3 Our contribution . 12

2 Used datasets and preprocessing steps 13

2.1 Used datasets . 13

2.2 Non-distributed preprocessing steps . 14

2.3 Parallelized preprocessing steps . 15

3 Proposed unsupervised text feature selection method 17

3.1 Global search using NSGA II . 17

3.2 Population initialization and stopping condition 18

3.3 NSGA II objective functions . 19

3.4 Crossover and mutation operators . 20

3.5 Local search using Hill Climbing. Final selected subset of features 20

4 Parallelized version in Spark of the proposed method 22

4.1 Cluster architecture and configurations 22

4.2 Pseudo-code of the distributed algorithm 22

4.3 Broadcasted data . 23

4.4 Population initialization and stopping condition 23

4.5 Population evaluation. Determining the fronts 24

4.6 Crowding sorting and selection . 24

4.7 Crossover and mutation operators . 25

4.8 Local search using Hill Climbing. Final selected subset of features 26

5 Experiments for the classic and parallelized proposed methods 27

5.0.1 Experiments for the classic (non-distributed) proposed method . 27

5.0.2 Experiments using the distributed proposed method 38

Conclusions and future improvements 51

Bibliography 53

1

Introduction

Text mining is a data mining sub-domain, with important applications in practice

[1], focused on gaining useful information from textual data by using NLP techniques.

It includes text feature selection and extraction, text summarization, text clustering and

categorization.

The first step when analyzing textual data is the preprocessing phase, involving

general operations such as stop words removal, lemmatization/stemming and other

operations specific to the task. This step is often followed by a feature selection phase

(in which a subset of relevant input features is selected) and/or feature extraction

phase (in which a subset of new relevant features is created based on the given in-

put features). A special case of the feature extraction methods is represented by the

projection pursuit techniques [2], [3], aiming to extract low-dimensional projections of

the data which reveal interesting properties. Criteria used in the project pursuit task

include the Kurtosis [4] measure, the Holes Index [5], [6] and other metrics.

The feature selection/extraction phase is essential for reducing the high dimen-

sionality of textual data by eliminating redundant, unnecessary and noisy features

from the documents. This step increases the chances of performing a more mean-

ingful future analysis of the textual data by avoiding the ”curse of dimensionality”

and reduces the time and space complexity of subsequent text mining steps, such as

classification and clustering.

The exponential increase of the textual unlabeled corpora (web documents, emails,

etc.) has increased the need for improving the existing unsupervised feature selection

and/or extraction techniques and discovering new ones.

Genetic Algorithms (GAs) [7] are meta-heuristics inspired by the process of bi-

ological evolution, with a potential of yielding high quality results for complex opti-

mization and search problems. Genetic Algorithms are a promising alternative tech-

nique from the classical methods for solving the text feature selection problem, provid-

ing a global search for the optimum feature subset. However, using a single criterion

(the GA’s fitness function) for determining the best feature subset may not always yield

2

good enough results.

Therefore, it may be useful to utilize multiple selection criteria [8], [9]. If the sin-

gle used objective incorporates multiple feature selection metrics, there still remains

the problem of weighting each employed metric. Multi-objective Evolutionary Algo-

rithms, such as Non-dominated Sorting Genetic Algorithm (NSGA II [10]) and Strength

Pareto Evolutionary Algorithm (SPEA II [11]), are suitable candidates for solving this

issue. These techniques use the concept of Pareto dominance to organize the solutions

in fronts, based on the degree to which they dominate and are dominated by other

solutions.

In order to complement the global search conducted by the chosen (multi-objective)

evolutionary strategy and potentially increase the overall performance of it, hybridiza-

tions with other meta-heuristics such as Sine Cosine Algorithm [12] and Grasshopper

Optimization Algorithm [13] may be employed.

In this dissertation paper, we aim to address the unsupervised text feature selec-

tion task by making two substantial contributions. We have previously highlighted the

challenges and benefits associated with this problem.

Firstly, we introduced a new unsupervised text feature selection method which

sequentially applies NSGA II and Hill Climbing. The NSGA II meta-heuristic was used

to provide an initial global search for the best feature subset(s), while the Hill Climbing

strategy complemented it by performing a local improvement of the finally selected

global optima. The chosen dominance criteria for the NSGA II algorithm were: an

adapted version of the classical Mean Absolute Difference (MAD) relevance measure

[14], [15] and the Holes projection pursuit index [5], [6] both weighted by the length of

the current feature subset. The Hill Climbing method was utilized to reduce the num-

ber of redundant features in the chromosomes, redundancy of a term being measured

as the sum of lexical and semantic similarities between the current term and the other

features in the chromosome.

Experiments conducted on four real-world textual subdatasets indicated that our

proposed approach achieved very good results in comparison to four state-of-the-art

evolutionary unsupervised feature selection techniques [14], [15], [16], [17] and to one

classical feature extraction method with proven effectiveness (Principal Component

Analysis).

Secondly, we created a parallelized (distributed) version of the above-mentioned

method in Spark [18], using operations over PySpark dataframes, due to their in-

creased efficiency when compared to operations over RDDs. The preprocessing and

solution evaluation steps were also reimplemented in Spark.

3

We tested our solution on the RaaS university’s cluster. We realized various ex-

periments on multiple benchmark textual datasets to asses the performance and the

time efficiency of our approach. The obtained results confirmed that our proposed

method reached performance levels that were comparable to or higher than those

achieved by four recent and efficient evolutionary feature selection techniques and by

the Principal Component Analysis feature extraction method.

The rest of the paper is organized as follows: section 1 discusses related work;

section 2 presents the textual datasets used in the experiments and the preprocessing

steps performed over them; section 3 introduces the proposed unsupervised feature

selection method based on NSGA II and Hill Climbing; section 4 describes the paral-

lelized version in Spark of the proposed approach, section 5 contains the experimental

results. The last section includes final discussions, conclusions and ideas for future

improvements.

4

Chapter 1

Related work

This chapter is divided into two comprehensive subsections. The first one de-

scribes multiple state-of-the-art and other representative evolutionary methods uti-

lized for solving the text feature selection problem. The second subsection, on the other

hand, covers various techniques utilized for parallelizing single and multi-objective

genetic algorithms. At the end of each subsection, we present the contributions that

we brought in comparison to the existent state-of-the-art techniques and other rele-

vant methods.

1.1 Nature inspired methods for solving the text feature

selection task

1.1.1 Review of nature inspired techniques for addressing the text

feature selection problem

Evolutionary Algorithms for solving the feature selection problem have been

studied intensively for years [19]. Most of the first proposed solutions utilized single

objective Genetic Algorithms (GA), while subsequent algorithms made use of meta-

heuristics such as versions of Particle Swarm Optimization (PSO) [14] and Ant Colony

Optimization (ACO) [20] adapted to this problem, combined multiple meta-heuristics

[13] or considered multiple objective functions [21].

In the case of supervised feature selection, the fitness function of the proposed

single objective solutions usually combined the size of the subset of features with the

accuracy/error rate provided by a classifier in a weighted sum [22], [23]. These crite-

ria were also commonly utilized in multi-objective algorithms such as NSGA II [21].

Multiple other interesting objective functions have been taken into account over the

5

last years, such as the entropy of sensitivity and specificity of a classifier [24] and the

multivariate Relative Discriminative Criterion that minimizes the Pearson correlation

between the features while maximizing the relative discriminative criterion [9].

Regarding the unsupervised feature selection, the options of choosing the ob-

jective function(s) are a lot more limited. The proposed Genetic Algorithms usually

employed fitness functions that generalized the definitions of filter unsupervised met-

rics such as Term Variance [25] or TF-IDF [26] to adapt them to work with a subset of

features. For example, a simple method of generalization consisted in performing a

sum or a mean over the individual scores of the metric for each term to determine the

score of the group of features [26]. An extension of this approach involved introducing

a threshold and ignoring the scores calculated for a document and a group of features

if the percentage of terms from the group that were also present in the document was

lower than the given threshold [25].

Another very popular evolutionary strategy utilized for unsupervised feature se-

lection was Particle Swarm Optimization, as mentioned in [19] Even though PSO was

traditionally used for global numerical optimization problems, adaptations of it, such

as Binary Particle Swarm Optimization made it possible for it to operate on a discrete

space to solve the feature selection problem [27] To avoid the premature convergence

problem of PSO [28], common solutions that included tuning the inertia weight and/or

using an adaptive constriction factor were also utilized for the feature selection task

[29]. Adaptations of PSO utilizing variable length particles [8] were proposed to elim-

inate the constraint of using fixed length representations and to improve the perfor-

mance of PSO for this task.

Besides the mentioned meta-heuristics, recent solutions for the unsupervised text

feature selection problem included Binary Grey Wolf Optimizer (BGWO) [15], Binary

Multi-Verse Optimizer (BMVO) [16] and Krill Herd Algorithm (KH) [17].

The most commonly used fitness function for those three techniques (BGWO,

BMVO, KH) and also for multiple versions of PSO was the mean absolute difference

(MAD), used with the TF-IDF weighting scheme [14], [15], [16]. This optimization

criterion was used under the assumption that the ith candidate solution of PSO/ BG-

WO/ BMVO/ KH from the population encoded the selected features (words) from

the ith document; the length of each solution was equal to the total number of unique

words existent in all documents. Important limitations of this popular approach in-

clude memory and run-time efficiency issues and the loss of generality of the solution

(because a different subset of features is selected for each document).

6

1.1.2 Our contribution

Our work has multiple purposes: firstly, it eliminates the above-mentioned limi-

tations, by proposing a different representation for the solutions and for the associated

operators. Secondly, it broadens the choices of objective functions for this task, by

bringing into attention two efficient and effective criteria: an adapted version of MAD

and the Holes projection pursuit index. Thirdly, it complements the lack of literature

regarding the usage of multi-objective meta-heuristics for the unsupervised feature se-

lection problem by introducing a solution based on NSGA II. It also introduces a local

improvement strategy using Hill Climbing, that aims to eliminate redundant features

based on a proposed measure combining lexical and semantic similarities. Lastly, we

provide a thorough comparison of our method with four state-of-the-art evolutionary

techniques for solving the unsupervised feature selection problem and with one clas-

sical feature extraction method, our solution showing very good results.

1.2 Methods and strategies for parallelizing NSGA-II and

GA evolutionary techniques

Our proposed technique sequentially applies NSGA II with Hill Climbing to

solve the problem of unsupervised text feature selection. To implement a distributed

version of this method, we first need to examine the ways in which we can parallelize

the components of the proposed approach.

The Hill Climbing meta-heuristic itself cannot be parallelized, as it is a trajec-

tory method that performs a local search by iteratively improving the current solution.

However, the task of applying Hill Climbing separately on each of the best chromo-

somes previously determined by NSGA II is embarrassingly parallel.

The advantages offered by the evolutionary techniques (for e.g., single and multi-

objective genetic algorithms) usually come at the cost of a large time complexity. In

case of genetic algorithms, the process of evolving the population and evaluating it

using the fitness function over a series of generations is often a time-consuming one.

In case of multi-objective evolutionary algorithms such as NSGA II, the non-dominated

sorting and crowding distance sorting steps further add to the complexity.

To improve the time complexity of these population based methods (GA and

NSGA II), multiple methods for parallelizing them have been developed over the years

[30], [31]. In this section, we discuss and compare classic models of parallelization

commonly used for GAs and we review related work regarding strategies of parallel

7

computing for the GA and NSGA II evolutionary methods.

1.2.1 Classic models of parallelization for Genetic Algorithms

As mentioned in the literature [32], [33], [31], there are currently three classical

models for parallelizing a GA, that can also be extended to multi-objective evolution-

ary methods such as NSGA II and to other evolutionary approaches:

• The Master Slave model (also called Global Parallelization model). In this model, there

is one master node that manages the population by applying GA operators (e.g.,

crossover, mutation) and by performing the selection; when it comes to fitness

evaluation (usually the most expensive step in the algorithm), the master dis-

tributes the chromosomes to slave nodes that compute the fitness for the assigned

individuals and receives the results based on which it performs the selection in

order to create the new population.

• The Island model (also called Coarse-Grained Parallelization model/ Multiple-deme model).

This model operates over subpopulations (of the initial population) called is-

lands. More exactly, each slave node runs all evolutionary steps of a GA (crossover,

mutation, fitness evaluation, selection) on a given subpopulation. In order to

preserve the diversity and promote evolution, chromosomes can be migrated be-

tween subpopulations according to a set of rules.

• The Cellular model (also called Fine-Grained Parallelization model/ Grid model). As in

the previous model, the GA is applied separately over subpopulations, however

now a subpopulation represents an adjacent neighbourhood in a distributed grid

where each node in the grid can retain one or more chromosomes.

The Cellular model requires massively parallel hardware usage in order to be

computationally efficient. The communication overhead between the different nodes

also represents a challenge. Due to these reasons, the first and second model are usu-

ally preferred.

The Master Slave model brings the advantage that it leads to solutions of the

same quality as the sequential GA, however it is offers less parallelization than the

Island model. In contrast, the higher degree of parallelization provided by the Island

model comes at the cost of potentially reaching suboptimal solutions due to diversity

issues. Another downside of the Island model might be the communication overhead

resulted from the migration process of the chromosomes between the subpopulations.

8

Regardless of the utilized parallelization model, there is still the issue of accessing

data for fitness evaluation and/or for applying genetic operators (such as mutation).

If the data is retained in the memory of each node this increases the performance,

however there might be memory issues in case of large quantities of data that need to

be retained. If the data is shared in real time between nodes, then there might appear

communication overhead issues. Cluster computing frameworks such as Hadoop [34]

and Spark [35] are indicated to be used to deal more easily with such problems and

other problems related to parallel computing (scalability, availability, etc.).

1.2.2 Review of parallel computing techniques for GA and NSGA II

The literature offers many examples of parallelized GAs for solving various opti-

mization problems, however there are considerably fewer papers concerning the par-

allelization of multi-objective algorithms such as NSGA II. Due to reasons mentioned

in the previous section, most proposed solutions adapt the Master-Slave or the Island

model. Next, we will discuss several significant parallelization approaches and high-

light the most remarkable contributions of the authors.

In [36], the authors proposed one synchronous and two asynchronous versions

of the Master-Slave model for the NSGA II algorithm. In the classical synchronous

version of the parallel NSGA II, the master node simply distributed a set of chromo-

somes to each worker node. In case of both asynchronous versions of NSGA II, the

master node initially sent P individuals to the workers, where P was the number of

available workers; as soon as a worker returned the evaluation for a chromosome, it

was assigned a new individual, until all chromosomes were evaluated. The authors

proved that this strategy made full use of the computational power of the slave nodes

and increased the performance the algorithm. The difference between the two pro-

posed asynchronous approaches for parallelizing NSGA II was that one of them was

generational (meaning that from the current population a new separate population

of offspring was created and afterwards both populations were combined and the se-

lection was applied) and the other one was steady state (meaning that the generated

offspring were directly inserted in the current population). The authors deployed their

approach in Sparrow, a framework for distributed computing also created by them.

The authors of paper [37] indicated how GAs could be implemented using the

Map Reduce paradigm (Hadoop framework) and demonstrated the scalability of their

approach for large problem sizes. Each generation of a GA was associated to a Map

Reduce job as follows: the map function received as input a key which was a unique

9

identifier of the chromosome and a dummy value, determined the fitness function

of the chromosome and emitted the chromosome as key and its fitness as value. A

random partitioner was utilized to shuffle the chromosomes and distribute them ran-

domly to reducers. This step was essential as utilizing the custom hash partitioner

would have introduced an unnatural constraint affecting negatively the convergence

of the genetic algorithm. In the reduce phase, the authors performed a tournament

selections of size S (without replacement) and uniform crossovers: in case of each re-

ducer, chromosomes were added into a buffer until the number of elements in the

buffer reached the limit S; then the selection operator was applied to choose two chro-

mosomes; finally a uniform crossover was applied over the two selected chromosomes

and the reducer emitted two pairs (key, value), where the key was one of the created

offspring and the value was a dummy value. At each iteration, the best chromosome

from the population was written on Hadoop Distributed File System (HDFS).

Paper [38] presented a Master-Slave parallel NSGA-II algorithm for solving the

multi-objective optimal power flow problem. The authors implemented their solution

using an MPI (Message Passing Interface) approach. To share data necessary for the

fitness computation, the Master node broadcasted the required information through

MPI; the slave nodes saved the received data locally. A difference from the classical

Master-Slave approach was that the master node also calculated the fitness for a subset

of chromosomes from the population.

The authors of paper [30] described an implementation of a parallel GA in Spark

which was utilized to solve the test data generation problem. Authors highlighted the

main advantages of Spark over other frameworks or libraries for parallel computing

such as MPI or PVM (Parallel Virtual Machine): easy setup, automatic fault-tolerance

and the option to test the solution locally or on a cluster with minimal configurations.

The proposed approach followed the Island model, such that in the map phase several

GAs running over different random populations were instantiated and in the reduce

phase the best chromosomes generated by each GA were collected.

In paper [39], it was proposed a Spark implementation of a GA for sensor place-

ment in large scale drinking water distribution systems. In the Driver program, the

population was initialized as an RDD and parallelized into different partitions. The

map function was used to calculate the fitness of each chromosome. After the pro-

cess of fitness evaluation was finalized, a selection followed by the application of the

crossover and mutation operators was performed in the Driver code. The process was

continued until the stopping condition was met.

Paper [32] presented a Spark based framework for parallelizing GAs using the Is-

10

land model. More exactly, the population of chromosomes was distributed on separate

partitions of an RDD and multiple GAs ran on each partition, such that the application

of genetic operators did not take into account the individuals from the other partitions.

Once every MigrationInterval generations, best MigrationRate chromosomes were

broadcasted from each partition and each partition replaced its worst chromosome by

the fittest broadcasted solution. Authors compared their solution to the sequential GA

and proved that the gained time performance was significant and that the error rate

didn’t increase considerably.

In paper [33], the authors introduced two generic implementations of a GA on

the Apache Hadoop framework and in Spark. In contrast to other discussed papers,

the presented implementation of a generic GA in Hadoop included a new strategy for

performing the crossover, more exactly several crossover pools were created based on

the chromosomes with the same fitness values (the chromosomes with the same fitness

were grouped together via a Map Only job which evaluated each individual and emit-

ted its fitness as key and the chromosome as value). After the crossover pools were

created, another Map Reduce job was ran: each mapper worked on a chromosome

pool and generated multiple new chromosomes by applying the crossover and muta-

tion operations; the reducers aggregated and evaluated the newly generated chromo-

somes. The main procedure performed the selection operation over the new offspring

chromosomes collected from the reducers. The process was repeated iteratively until

the stopping condition was met. The Spark implementation of the GA resembled very

much the Hadoop implementation in terms of logic.

Paper [31] described a parallel bi-objective NSGA II algorithm implemented in

Spark for solving the supervised feature selection problem. The two objectives taken

into account were the AUC metric and the cardinality of the chosen subset of features.

The proposed solution followed the Island model: first, the initial population was split

into k randomly selected overlapping subpopulation of the same size and all hyperpa-

rameters were broadcasted to all islands; next, each subpopulation was evolved inde-

pendently and in parallel by each worker for mGen maximum generations; at the end

of mGen iterations, the chromosomes were migrated between the subpopulations and

the process was repeated. In order to perform the migration, first, all chromosomes

were collected from the subpopulations, then non dominated sorting and crowding

distance sorting was performed and top chromosomes were selected to form the new

population. This new population was again split into separate subpopulations that

would be evolved in separate islands. The process continued until a termination con-

dition was met. The Authors also described parallel versions of other multi-objective

11

algorithms, such as MOEA/D (Multi-objective Evolutionary Algorithm Based on De-

composition) and NSPSO (Non-Dominated Sorting Particle Swarm Optimizer). On

the DDoS dataset, the presented NSGA II parallelized approach outperformed the two

other proposed solutions for the supervised feature selection problem.

1.2.3 Our contribution

Our proposed approach involved the sequential application of NSGA II and Hill

Climbing. To parallelize the NSGA II evolutionary method, we used the Master Slave

model, due to the advantages that it brought in comparison to the other two models

(highest quality of the solutions, relatively fast model) [40]. As we have previously

mentioned, the parallelization of the second part of the proposed method consisted in

simultaneously executing the Hill Climbing meta-heuristic over a set of chromosomes

selected as being the best solutions by NSGA II.

The implementation was realized in Spark due to the numerous advantages that

this framework brings in contrast to other tools or libraries for parallel computing

(speed, flexibility when it comes to choosing the running mode - local / pseudo-

distributed / cluster, automatic fault-tolerance, etc.) [30], [41]. We chose to perform

the operations over PySpark dataframes, due to their increased efficiency when com-

pared to operations over RDDs.

We tested our solution and showed that it achieved close results to the ones ob-

tained by the non-distributed version; the execution time was also significantly lower,

as expected. We also performed experiments on a large dataset with 1000 documents

(BBC 1000), showing that our solution obtained good results when compared to PCA.

In the last performed experiment, we proved that our distributed feature selection ap-

proach had, in many cases, a positive impact on multiple classification and clustering

algorithms.

12

Chapter 2

Used datasets and preprocessing steps

This section provides details regarding the textual datasets utilized to test our

proposed solutions and the preprocessing steps performed over them. To evaluate

both the non-distributed and the parallelized proposed approaches, we conducted

separate experiments over datasets differing in size; the non-distributed version was

tested on smaller datasets (with at most 350 documents), while the parallelized version

was also evaluated on a considerably larger dataset (with 1000 documents).

2.1 Used datasets

To compare our non-distributed approach with multiple state-of-the-art feature

selection and feature extraction techniques for solving the unsupervised text feature

selection task, we utilized four real-world textual subdatasets:

1. Reuters200, a subset of 200 randomly chosen news documents from Reuters-

21578 1 - belonging to 4 categories: alum, acq, barley, bop.

2. 20Newsgroups300, a subset of 300 randomly chosen news documents from 20News-

groups 2 – belonging to 3 categories: talk.politics.guns, sci.med, soc.religion.christian.

3. Reuters350, a subset of 350 randomly chosen news documents from Reuters-

21578 – belonging to 10 categories: zinc, yen, silver, orange, cotton, coffee, coconut,

housing, potato, gold.

4. BBC1000, a subset of 1000 randomly chosen news documents from the BBC

news corpus 3 - belonging to 5 categories: business, entertainment, politics, sport,

1https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection
2https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
3https://www.kaggle.com/datasets/shivamkushwaha/bbc-full-text-document-classification

13

tech. This dataset is perfectly balanced, each category being associated to 200

instances.

We chose these datasets as they were representative for the task, frequently used

in NLP research and already utilized in experiments by the authors of the state-of-the-

art methods used for the comparison.

2.2 Non-distributed preprocessing steps

The non-distributed preprocessing was applied to corpora with at most 350 doc-

uments. The first step consisted in transforming the documents using the NLTK 4 and

Spacy 5 Python libraries. We adjusted the Spacy tokenizer to not split compound words

by hyphen. For each document, we converted all terms to lowercase, we removed one

and two letter words, as well as special characters and tokens (such as URLs, math for-

mulas, numbers which were not part of a word). Stop words were removed by using

the stop words list provided by NLTK combined with a custom larger stop words list6.

We then lemmatized the remaining words.

We further proceeded by performing several preprocessing steps to obtain fast

future computations of the two used NSGA II objective functions. To effectively deter-

mine the Holes projection pursuit index, we retained for each term the list of document

ids in which it appeared, creating an inverted index. In case of the adapted MAD ob-

jective function, we determined a MAD score for each unique term in the vocabulary,

using a weighting based on an improved version of the TF-IDF score [42], as detailed

below.

The TF-IDF metric considers the frequency of a term inside a document (tf(t, d)),

but also an inverse document frequency (idf(t)), which has the purpose of making

features appearing in many documents weight less, as they are supposed to refer to

potentially more general irrelevant terms. The classic formula is given below:

tfIdf(t, d) = tf(t, d) ∗ idf(t) (2.1)

In case of datasets with categories of varying sizes, terms from classes with larger

sizes are assigned lower IDF values. Moreover, rare and irrelevant terms may be as-

signed higher scores than relevant terms appearing more frequently. To solve these

issues, authors of paper [42] proposed an improved version of TF-IDF. The IDF term

4https://www.nltk.org/
5https://spacy.io/
6https://www.ranks.nl/stopwords

14

was adapted to reduce the bias induced in case of corpora with unbalanced categories

as follows:

idf(t) = log

(
nb docs+ 1

adf (t) + 1

)
(2.2)

adf (t) =
(df(t)− df)2

nb terms
(2.3)

where df represents the mean of all df(t) values for each term t, nb terms denotes

the vocabulary size and nb docs the total number of documents.

The adapted MAD score for a term t, based on the improved TF-IDF weighting

scheme, was calculated as follows:

MADterm(t) =
1

nb docs

nb docs∑
i=1

|tfIdf(t, di)− tfIdf(t)| (2.4)

tfIdf(t) =
1

nb docs

nb docs∑
i=1

tfIdf(t, di)| (2.5)

where tfIdf(t, di) represents the improved TF-IDF score for the term t and the ith

document di, and tfIdf(t) is the mean of the improved TF-IDF scores for the term t.

The proposed MAD score differed from the original formula [14], [15], [16], as it

was adjusted to enable the discovery of the best feature subset(s) for the entire collec-

tion of documents, rather than determining individual solutions for each document.

The weighting scheme was also an improved version of TF-IDF, not the classical one.

We finally min-max normalized the adapted MAD scores, bringing them in the

range [0,1], such that these scores could also be used in a roulette wheel selection dur-

ing the population initialization step.

2.3 Parallelized preprocessing steps

The parallelized preprocessing included the same initial steps as the ones from

the non-distributed version: tokenization, keeping only tokens of length at least 2

which were formatted as words, lemmatization based on POS tags, stop words re-

moval.

To implement these first preprocessing steps in Spark, a pipeline of transforma-

tions was applied over the Pyspark dataframe containing the documents. In cases in

which a transformer was not already implemented for the preprocessing subtask, we

defined our own transformers.

15

Next, we constructed an inverted index inv idx, retaining for each term t the

MADterm(t) score and the list of ids of the documents in which the term appeared.

This information was useful for speeding up the computation of the MAD and Holes

objective functions of the NSGA II algorithm.

To build the inverted index, we started by applying several aggregations over the

dataframe of preprocessed documents, determining for each term t:

• its document frequency (df(t))

• the list of frequencies of appearance of t in each document di (tfIdf(t, di))

• the list of ids corresponding to documents in which t appeared

Then, we utilized an user defined function (UDF) to calculate for each term t

its inverse document frequency (idf(t)), starting from its document frequency (df(t)).

We finally used another UDF to compute the normalized adapted MAD score of t

(MADterm(t)) using the inverse document frequency (idf(t)), as well as the list of fre-

quencies for each document di (tfIdf(t, di)). Because of its large size, we stored the

obtained inverted index on HDFS (Hadoop Distributed File System).

16

Chapter 3

Proposed unsupervised text feature

selection method

The proposed method employed two metaheuristics applied sequentially, namely

NSGA II and Hill Climbing. NSGA II was utilized to conduct an initial search for the

best feature subset(s) on a global scale. The Hill Climbing strategy was further used

to enhance this process by performing a local improvement of the selected global so-

lutions. The following subsections present details concerning the design of the two

strategies.

3.1 Global search using NSGA II

The pseudo-code of the NSGA II based global search method for finding the opti-

mal feature subset(s) is given below. The algorithm followed the classical NSGA II [10]

steps, namely it started with an initial population that was iteratively improved until

a stopping condition was met.

1 pop = ini t ia l ize populat ion (pop size , min init ch len , max init ch len ,

tournament size)

2 while (! stop condition (pop, max nb of generations , σlim)) :

3 determine fronts (pop)

4 pop = selection using fronts and crowding sorting (pop size , pop)

5 parents = iterated tournament selection (pop)

6 pop = nondestructive crossover (parents , pop)

7 pop = nondestructive mutation (pop)

8 return get chromosomes front1 (pop)

Listing 3.1: Pseudocode of the nondistributed proposed algorithm

At each generation, every chromosome C was assigned a rank indicating the

17

front, in the determine fronts function, utilizing the principle of Pareto dominance.

The rank was determined based on the list of dominated chromosomes, as well as the

number of chromosomes that dominated C [10]. Lower ranks were associated to chro-

mosomes that attained better values for the two utilized objective functions.

Next, the function selection using fronts and crowding sorting was used to se-

lect pop size chromosomes as part of the new population, by choosing chromosomes

with the lowest ranks. In case only some chromosomes needed to be selected from a

specific front, the split decision was made by taking into account the crowding distance

[10]. Thus, from the chromosomes belonging to the same front, the ones that were lo-

cated in a less crowded region were chosen. In case of the first iteration, the number of

chromosomes in the population was already equal to pop size, but in subsequent gen-

erations, new chromosomes were added in the population during the mutation and

the crossover steps.

Finally, the parents for the crossover were selected in the iterated tournament selection

function and the crossover and mutation operators were applied non-destructively to

obtain the new population.

After the stopping condition was met, the algorithm returned as output the chro-

mosomes from front 1 from the final population, which indicated the best feature sub-

sets selected according to the optimized objective functions.

The next subsections include comprehensive information regarding the mentioned

steps.

3.2 Population initialization and stopping condition

The initial population consisted of pop size chromosomes, each chromosome cor-

responding to a feature subset. The initial length of the chromosomes varied between

min init ch len and max init ch len inclusively. A gene in a chromosome was rep-

resented by a vocabulary term. We considered this representation of the genotype

to avoid the limitations discussed in section 2. Each gene was chosen using either a

tournament selection of size tournament size or a Roulette Wheel approach, both with

equal probability. Regardless of the utilized method, the normalized MAD score of a

term was used as a fitness function for the selection.

The algorithm was stopped if the maximal crowding distance stabilized over L

generations or if a number of max nb of generations iterations was exceeded. In pa-

per [43], authors discussed and demonstrated empirically the superiority of choosing

a stop criterion based on the stabilization of the maximal crowding distance and pro-

18

posed the following formula for the termination condition, that we also utilized in our

work:

√√√√ 1

L

L∑
i=1

(dl − dl)2 < σlim (3.1)

where dl is the maximal crowding distance computed at generation l, dl is the

mean of the maximal crowding distance computed over L generations and σlim is a

threshold chosen empirically.

3.3 NSGA II objective functions

The procedure for determining the fronts (determine fronts function) took into

account two objective functions: an adapted version of the Mean Absolute Difference

(MAD) and the Holes projection pursuit index, both weighted by the length of the

subset of features. For a chromosome ch, the criteria were calculated as follows:

MAD(ch) =
1√

nb feats

nb feats∑
i=1

MADterm(ti) (3.2)

Holes(ch) =
1√

nb feats
(1− 1

nb docs

nb docs∑
k=1

1

e
1
2
xk·xk

) (3.3)

where nb feats represents the number of features in the chromosome ch and

MADterm(ti) is the adapted MAD score for the ith feature of ch and nb docs is the total

number of documents. The xk · xk value retains the sum of squares of the Doc2Vec [44]

embeddings for the terms from ch that also appear in the kth document.

The proposed MAD score was modified from the original formula [14], [15], to

allow the identification of the optimal feature subset(s) for the entire set of documents,

instead of generating separate solutions for each document.

The Holes index [5] is a metric commonly utilized in projection pursuit [2] due

to its efficient calculation and robustness. The maximization of this index enables one

to discover clustering patterns in the data. To apply this index for a textual dataset

in the feature selection scenario, the first step is to keep only the selected terms in

each document and then to represent numerically these reduced documents as vectors,

using a weighting scheme such as Doc2Vec. xk represents the vector of embeddings

corresponding to the kth reduced document, while xk · xk is the dot product between

xk and itself (also equal to the magnitude of the vector squared).

We chose to integrate the length of the feature subset in the two objective func-

tions instead of creating a third objective function that minimized the length of the

19

chromosome, in order to avoid the convergence towards non-dominated solutions

with a very large number of terms. Small-scale experiments showed that the square

root function was a good option for weighting the total number of features in each

chromosome.

3.4 Crossover and mutation operators

The iterated tournament selection function repeated a binary tournament selec-

tion in order to choose pop size chromosomes as parents for the crossover step. When

comparing two chromosomes, the one with a lower rank, or with a higher crowding

distance in case of equal ranks, was selected.

The selected parents were grouped two by two and an order preserving crossover

was applied for each pair. The operation was non-destructive, so the resulted offspring

were added to the population.

To perform the crossover for two chromosomes ch1 and ch2 a cutting point was

chosen randomly for each of them, as well as a parameter s indicating a side (left or

right). The first offspring was created by copying the values from the side s of chromo-

some ch1 and appending on the other side the values from ch2 that were not already

added in the offspring. The second offspring was similarly created by reversing the

roles of ch1 and ch2. This procedure ensured that only unique terms were retained in

each of the resulting chromosomes.

We applied a single mutation on each chromosome obtained after the crossover,

generating an offspring that was also added in the resulting population. There were

three types of possible mutations: add mutation (a randomly chosen term in the vocab-

ulary, not present in the current chromosome, was added at a random position), delete

mutation (a term at a randomly chosen position was deleted) and modify mutation

(a randomly selected gene was replaced with a randomly chosen vocabulary term not

present in the chromosome). Each type of mutation had an equal probability of being

chosen.

3.5 Local search using Hill Climbing. Final selected sub-

set of features

The Hill Climbing method was applied over the chromosomes from front 1 se-

lected by the NSGA II meta-heuristic in order to provide a local improvement of the

20

currently chosen feature subsets, by discarding redundant features from them.

For each selected chromosome, nb of iterations Hill Climbing steps were per-

formed, at each step the current chromosome being compared to at most nb neighbors

neighbors and replaced with the first neighbor that was at least as good as it.

To obtain the neighbors of a chromosome, a list with the size min(nb neighbours,

chromosome length) of most redundant terms from the chromosome was determined.

With an equal probability of 1/3, each neighbor was generated by deleting one redun-

dant term from the chromosome, by replacing one redundant term from the chromo-

some with a random term from the vocabulary or by adding to it one random term

from the vocabulary.

The more similar a term was in comparison to the other features in the chromo-

some, the more redundant it was considered to be. The assumption made was that re-

lated features in terms of lexical and semantic similarity appeared in the same contexts

and didn’t provide much additional information. The similarity score between two

terms t1 and t2 was measured by summing a normalized version of the Levenshtein

distance with two WordNet types of semantic similarity (WuPalmer and shortest path

similarity) [45]:

sim(t1, t2) = norm lev(t1, t2) + wup(t1, t2) + path(t1, t2) (3.4)

where

norm lev(t1, t2) =
max(len(t1), len(t2))− lev dist(t1, t2)

max(len(t1), len(t2))
(3.5)

In the formulas above, lev dist(t1, t2) is the Levenshtein distance between t1 and

t2, norm lev(t1, t2) is a normalized in the [0,1] range version of it, len(t) represents the

number of letters in term t and wup and path denote the WordNet similarity functions.

The WuPalmer metric takes into account the depths in the WordNet taxonomy of the

synsets corresponding to each term and of their lowest common hypernym to calculate

the similarity, while the path similarity determines the shortest paths between the two

synsets corresponding to each term.

The similarity score of a term t in the chromosome was calculated as the sum of

all similarity scores between t and the other features in the chromosome. The terms

with the highest similarity scores were considered to be the most redundant.

Lastly, we retained the new chromosomes resulted after applying the Hill Climb-

ing method. To obtain the final set of selected features, we computed the frequency of

the terms belonging to these chromosomes and finally chose at most nb selected terms

terms with the highest frequencies.

21

Chapter 4

Parallelized version in Spark of the

proposed method

4.1 Cluster architecture and configurations

To implement the parallelized version of the proposed method in Spark, we worked

on the university’s RAAS (Research-As-A-Service) cluster 1. The parallelized imple-

mentation followed closely all the steps presented in the non-distributed version.

The used stack configuration contained 4 worker nodes and 1 driver (master)

node, where all the nodes had the m1.large flavour (8 VCPUs, 8GB of RAM, 500 GiB

of disk memory). Each worker node had associated 2 executors, each executor being

allocated 3 cores and 2GB of RAM. The Driver node was allocated 7 cores and 5GB

of RAM. On each node the RAM and number of core resources were less than the

maximum threshold (8 GB of RAM and 8 cores), as 1 core and 2-3 GB of RAM were

already used or could be used by the OS, Yarn, Hadoop and Spark.

4.2 Pseudo-code of the distributed algorithm

Below is given the pseudocode for the distributed procedure combining the NSGA-

II and Hill Climbing algorithms. We used a middle way between the master slave

model (in which only the fitness function was computed in parallel) and the island

model (in which multiple workers ran the algorithm in parallel).

More exactly, we parallelized the population initialization, evaluation, crossover,

mutation and Hill Climbing steps, but performed the steps for determining the fronts

and for the crowding distance sorting on the driver node. In this way, we could ex-

1http://raas-is.uaic.ro/Pagini/Servicii.aspx

22

ploit at maximum the parallelization benefits without risking to suffer a loss in the

evaluation performance.

1 samples = get samples (inv idx , init pop sample cnt ,

2 init pop big sample size percent)

3 pop df = ini t ia l ize populat ion (pop size , min init ch len , max init ch len ,

4 samples , tournament size)

5 while ! stop condition (pop df , max nb of generations , L, σlim) :

6 pop objf df = evaluate ch (pop df , inv idx)

7 pop objf rank df = determine fronts (pop objf df . c o l l e c t ())

8 selected ch df = crowding sorting and selection (pop objf rank df)

9 ch front1 df = g e t c h f i r s t f r o n t (selected ch df)

10 pop df = crossover and mutation spark (selected ch df)

11 ch front1 HC df = Hill Climbing local search (ch front1 df)

12 return get features (ch front1 HC df)

Listing 4.1: Pseudocode of the distributed algorithm

4.3 Broadcasted data

As mentioned in the section 2.3, we used the determined inverted index inv idx

to achieve a faster computation of the two objective functions (Holes and MAD) used

by the NSGA II algorithm. We broadcasted the inverted index, such that each node of

the cluster had a copy of the shared data. In this way, we avoided the inefficiency and

communication overhead of distributing this information along with each task. This

solution sped up the execution of the distributed algorithm, as the objective functions

calculation step was utilized extremely frequently.

4.4 Population initialization and stopping condition

To parallelize the non-distributed population initialization step, we started by

creating init pop sample cnt samples of the inverted index inv idx, each sample having

a size of init pop big sample size percent percent out of the total number of elements

in inv idx. This step corresponds to the get samples method from the pseudocode

presented in section 4.2.

Next, we generated the initial population by applying a Spark udf (user de-

fined function) on a dummy Spark dataframe of size pop size, using the withColumn

transformation. This udf received as additional parameters: the minimum and max-

imum initial length of a chromosome (min init ch len and max init ch len), a ran-

23

dom sample of the inverted index (from the ones generated) and the tournament size

tournament size, useful in the tournament selection step.

The purpose of this udf was to create a chromosome corresponding to a feature

subset, with a random size between min init ch len and max init ch len. Just as in

the case of the non-distributed version of the algorithm, each gene in a chromosome

was chosen based on its normalized MAD score using with equal probability either a

tournament selection, either a Roulette Wheel selection. Finally, we removed possible

duplicated terms from each chromosome.

The stopping condition remained unchanged from the condition presented in the

non-parallelized algorithm.

4.5 Population evaluation. Determining the fronts

At each step of the NSGA II algorithm, the current population was retained in a

single-column Spark dataframe pop df , each row containing a chromosome. To eval-

uate the population, we used a udf that received as additional parameter the broad-

casted inverted index and computed the Holes and MAD scores for a given chromo-

some. The utilized objective functions were identical to the ones used in the non-

distributed version. This evaluation phase corresponds to the evaluate ch method in

the pseudocode from section 4.2.

We didn’t parallelize the step of determining the fronts as it wouldn’t have been

feasible (all chromosomes needed to be compared with each other). Therefore, we per-

formed this phase on the master node, by applying a collect action over the dataframe

pop objf df , containing the chromosomes’ objective functions and their ids. After as-

signing ranks to each chromosome in a non-distributed manner, we recreated the dis-

tributed Pyspark dataframe containing also the ranks besides the original chromosome

information.

4.6 Crowding sorting and selection

For this step, we utilized the PySpark dataframe pop objf rank df containing the

chromosomes, their associated objective functions values and ranks, constructed in the

previous phase (determining the fronts).

We iteratively selected chromosomes with increasing ranks, as long as the num-

ber of all the selected chromosomes didn’t exceed pop size, using the filter transfor-

mation. To retain the chosen chromosomes, we created a new dataframe selected ch df

24

that was repetitively extended with subsets of chromosomes using union.

In case we couldn’t select all chromosomes with a specific rank, a crowding sort-

ing was performed and only the chromosomes with the maximum crowding distance

were chosen and added to the final dataframe. This specific step was executed on the

master node (function crowd sorting in the given pseudocode).

1 def crowding sorting and selection (pop objf rank df) :

2 selected ch df = empty df ()

3 s ize selected ch df = 0

4 for front nb in [1 . . max front nb] :

5 ch with front df = get ch with front (pop objf rank df , front nb)

6 i f s ize selected ch df + size ch with front df <= pop size

7 selected ch df = selected ch df . union (ch with front df)

8 else

9 s e l e c t e d c h s p l i t f d f = crowd sorting (ch with front df)

10 selected ch df = selected ch df . union (se l e c t e d c h s p l i t f d f)

11 break

12 return selected ch df

Listing 4.2: Pseudocode for the crowding sorting and selection step

4.7 Crossover and mutation operators

We performed the crossover and mutation as operations over a Spark dataframe

containing the chromosomes from the population.

To implement the crossover, two samples of size half of the total population were

extracted and joined. To join them, we first associated indices to both samples using

the ZipWithIndex transformation and then we utilized join. We finally obtained a

dataframe with two columns, ch1 and ch2, each of them retaining the selected chro-

mosomes for the crossover. The operation was applied over the ch1 and ch2 columns

using an udf, creating a third column crossover, which contained pairs of resulted child

chromosomes.

These pairs of chromosomes were split on separate records using explode and a

mutation was applied over each chromosome using another udf, creating a mutation

column in the Spark dataframe.

The chromosomes from the initial population were united (union) with the chro-

mosomes from the crossover and mutation columns, resulting in a Spark dataframe

containing the final population.

The mutation and crossover procedures were identical to the ones presented in

25

the non-parallelized version of the algorithm.

4.8 Local search using Hill Climbing. Final selected sub-

set of features

The distributed local search strategy involved applying the non-distributed Hill

Climbing chromosome improvement procedure in parallel, over each chromosome

from the front 1. To implement this, the non-parallelized approach was utilized as a

udf over the PySpark dataframe ch front1 df , containing the chromosomes with rank

1. A new column ch front1 HC, created after applying the udf, included the resulted

chromosomes obtained after the local search.

Just as in the non-parallelized version, the final subset of selected features was ob-

tained by choosing the most frequent terms from the chromosomes of the ch front1 HC

column. This phase was associated to the get features method in the pseudocode from

section 4.2.

26

Chapter 5

Experiments for the classic and

parallelized proposed methods

In this section we discuss the results obtained when comparing the two versions

of our proposed solution (classical and parallelized) with multiple state-of-the-art and

other relevant unsupervised feature selection and feature extraction techniques.

5.0.1 Experiments for the classic (non-distributed) proposed method

This section outlines the outcomes of the experiments conducted on three textual

subdatasets (Reuters200, 20newsgroup300, Reuters350) to assess the effectiveness of

our suggested approach and to compare it with a general effective unsupervised fea-

ture extraction method (PCA using Doc2Vec embeddings) and with 4 state-of-the-art

evolutionary unsupervised feature selection techniques [14], [15], [16], [17].

The experiments involved clustering the current dataset using two versions of

the K-Means algorithm: K-Means++ and Spherical K-Means [46], the last technique

being a popular alternative for clustering textual data due to the usage of the cosine

similarity measure [14], [16]. To analyze the clustering performance, we compared

the original clustering assignments with the determined ones and further computed

the mean and standard deviation for multiple evaluation metrics (Accuracy, Precision,

Recall, Adjusted Rand Index (ARI), F1-measure).

In order to conduct the tests for our solution, we kept only the selected features

in each document, vectorized the documents using Doc2Vec, applied the two versions

of the clustering algorithms and computed the mentioned metrics.

In case of PCA, we first applied the Doc2Vec model over the entire collection of

documents, then determined the PCA components using the Doc2Vec scaled vectors

and finally used the clustering algorithms over the identified components to calculate

27

the evaluation criteria.

For all tests, the Doc2Vec model worked with vectors of size 300 and a window

size of 5, while the number of executed epochs was 20; the clustering methods were

initialized 20 times in order to not let the initialization of the centroids influence signif-

icantly the results and the maximum number of iterations was 500.

To obtain statistically significant results, we ran both PCA and our method 30

times for each dataset.

Taking into account that the sizes of the used datasets were comparative, we used

the same hyper-parameters for our propose approach, for all three textual collections.

The utilized hyperparameters, given in Table 5.1, were empirically determined by run-

ning small scale experiments.

Table 5.1: Hyperparameters used for the proposed method

Parameter Value

pop size 100

min init ch len 10

max init ch len 50

tournament size 10

max nb of generations 250

L 40

σlim 0.02

nb of iterations Hill Climbing 10

nb neighbours 30

A characteristic of our method was that the number of finally selected features,

corresponding to the nb terms selected parameter (and also to the Nb.offeatures col-

umn), could be varied according to the desired reduction rate. The other evolutionary

techniques used for the comparison provided a fixed number of features for a given

dataset; they also utilized only a single version of the K-Means algorithm (either clas-

sical or spherical) for all the experiments.

To compare our approach with the four state-of-the-art techniques, we used sim-

ilar testing conditions: the same version of K-Means and a number of selected features

very close to the number provided by those techniques. When performing compar-

isons with PCA, we varied both the number of selected features and the clustering

method.

Table 5.2 indicates the comparative results for our proposed approach, the PCA

28

method and FSPSOTC (Feature Selection technique based on PSO for improving Text

Clustering) [14] on the Reuters200 dataset. When using the K-Means clustering, our

solution obtained comparable or clearly better results than PCA; when using the Spher-

ical K-Means clustering, our technique substantially outperformed PCA on all metrics.

Our approach also achieved considerably superior results compared to FSPSOTC, at-

taining an increase of more than 25% for the Accuracy score, more than 8% for the

Precision metric and around 23% for the Recall score.

Table 5.3 summarizes the results on the 20Newsgroups300 dataset for the pre-

sented method, PCA and two state of the art evolutionary feature selection techniques

(Binary Gray Wolf Optimizer [15] and Binary Multi-Verse Optimizer [16]). Our ap-

proach obtained a significantly higher F1-Measure score in comparison to the BGWO

and the BMVO methods (0.51 vs. 0.34 and 0.36). When compared to PCA, it achieved

similar results for the K-Means clustering and noticeably superior results on the Accu-

racy, Precision and F1-Measure scores for the Spherical K-Means clustering; the Recall

scores for the Spherical clustering version were lower, however, due to the high stan-

dard deviation of the PCA method, further statistical tests were required to draw a

clear conclusion.

Table 5.4 contains the outcomes of the experiment conducted on the Reuters350

dataset using the Spherical K-Means clustering. In this final experiment, we com-

pared our method with PCA and with a state-of-the-art technique called MHKHA

(Membrane-driven Hybrid Krill Herd Algorithm) [17]. The results showed that our ap-

proach attained comparative or better results than PCA. When compared to MHKHA,

our method achieved substantially better results on the Accuracy metric (an improve-

ment of almost 35%), comparative results on the Recall measure and a lower score on

the Precision and F1-measure metrics (a decrease of almost 6%, and 3% respectively).

29

Table 5.2: Comparison between the proposed method, PCA and FSPSOTC on

Reuters200 dataset

Method
Clustering

algorithm

Nb. of

features
Accuracy Precision Recall ARI

Proposed

method

K-Means

300
0.6424

(0.0299)

0.3625

(0.0295)

0.5598

(0.0260)

0.1951

(0.0416)

800
0.6167

(0.0184)

0.3327

(0.0136)

0.5604

(0.0271)

0.1512

(0.0210)

1000
0.6128

(0.0244)

0.3359

(0.0179)

0.5601

(0.0288)

0.1561

(0.0272)

Spherical

K-Means

300
0.8371

(0.0245)

0.6562

(0.0566)

0.7512

(0.0759)

0.5868

(0.0543)

800
0.8431

(0.0158)

0.6594

(0.0421)

0.7853

(0.0777)

0.6071

(0.0360)

1000
0.8399

(0.0209)

0.6547

(0.0515)

0.7792

(0.0767)

0.5995

(0.0473)

PCA

K-Means

300
0.5878

(0.0098)

0.3158

(0.0056)

0.5583

(0.0104)

0.1242

(0.0089)

800
0.5914

(0.0044)

0.3190

(0.0036)

0.5623

(0.0022)

0.1302

(0.0063)

1000
0.5919

(0.0104)

0.3177

(0.0056)

0.5531

(0.0151)

0.1267

(0.0085)

Spherical

K-Means

300
0.6773

(0.0929)

0.4240

(0.1155)

0.5617

(0.0305)

0.2577

(0.1432)

800
0.6857

(0.0951)

0.4376

(0.1199)

0.5726

(0.0116)

0.2759

(0.1472)

1000
0.6797

(0.0915)

0.4259

(0.1156)

0.5587

(0.0315)

0.2595

(0.1429)

FSPSOTC
Spherical

K-Means
790 0.5845 0.5754 0.5518 -

30

Table 5.3: Comparison between the proposed method, PCA, BGWO and BMVO on

20NewsGroup300 dataset

Method
Clustering

algorithm

Nb. of

features
Accuracy Precision Recall

F1-

measure

Proposed

method

K-Means

1000
0.3537

(0.0035)

0.3464

(0.0008)

0.9858

(0.0040)

0.5124

(0.0002)

1200
0.3532

(0.0034)

0.3462

(0.0007)

0.9850

(0.0042)

0.5124

(0.0002)

Spherical

K-Means

1000
0.6427

(0.0398)

0.4889

(0.0474)

0.5890

(0.0569)

0.5317

(0.0344)

1200
0.6500

(0.0402)

0.4979

(0.0487)

0.6019

(0.0376)

0.5436

(0.0360)

PCA

K-Means

1000 0.3575 (0) 0.3472 (0) 0.9797 (0) 0.5127 (0)

1200
0.3572

(0.0013)

0.3472

(0.0003)

0.9800

(0.0016)

0.5127

(9e-5)

Spherical

K-Means

1000
0.4589

(0.1023)

0.3682

(0.0212)

0.7308

(0.2512)

0.4716

(0.0419)

1200
0.4588

(0.1025)

0.3681

(0.0212)

0.7305

(0.2520)

0.4714

(0.0421)

BGWO K-Means 1065 - - - 0.3418

BMVO K-Means ˜1150 - - - 0.3614

Table 5.4: Comparison between the proposed method, PCA and MHKHA on

Reuters350 dataset using Spherical K-Means

Method
Nb. of

features
Accuracy Precision Recall

F1-

measure
ARI

Proposed

method

1200
0.8904

(0.0063)

0.4676

(0.0272)

0.5505

(0.0379)

0.5015

(0.0340)

0.4405

(0.0387)

1500
0.8907

(0.0070)

0.4675

(0.0282)

0.5534

(0.0392)

0.5062

(0.0285)

0.4454

(0.0318)

1800
0.8897

(0.0106)

0.4649

(0.0407)

0.5464

(0.0447)

0.5013

(0.0361)

0.4400

(0.0411)

PCA

1200
0.8598

(0.0308)

0.3767

(0.0888)

0.4922

(0.0372)

0.4223

(0.0651)

0.3458

(0.0802)

1500
0.8607

(0.0321)

0.3812

(0.0946)

0.4986

(0.0388)

0.4278

(0.0712)

0.3517

(0.0872)

1800
0.8604

(0.0323)

0.3811

(0.0949)

0.4987

(0.0365)

0.4275

(0.0702)

0.3513

(0.0863)

MHKHA 1470 0.5441 0.5309 0.5449 0.5360 -

31

For all the three previously mentioned tables (5.2, 5.3 and 5.4), we also deter-

mined the associated plots representing the 95% confidence intervals for the true pop-

ulation mean of each utilized metric (Accuracy, Precision, Recall, etc.). This enabled us

to achieve a more detailed comparison between our proposed method and PCA.

To determine the confidence intervals, we used the T-Distribution (and not the

normal distribution), as the variance of the population was unknown [47]. The formula

for calculating the confidence interval is given below:

CI = [X + t ∗ S√
n− 1

, X + t ∗ S√
n− 1

] (5.1)

where X and S are the mean and the standard deviation of the sample of size n

(in our case n = 30) and t is the t-value corresponding to n − 1 degrees of freedom

and to a specific confidence level. For these experiments, we set the confidence level to

95%, thus using a t-value equal to 2.045.

Figures 5.1 to 5.5 visually describe the confidence intervals for each metric for

all the three subdatasets. The confidence intervals for the proposed method (NSGA

II hybridized with Hill Climbing) were depicted in green, while the ones for the PCA

technique were represented in orange.

As it can be seen, when using the Spherical K-Means clustering, we can state

with a level of confidence of 95% that the results obtained by the proposed strategy

considerably outperformed the ones obtained by PCA (with a single exception for the

Recall metric for the 20Newsgroup dataset).

When using the K-Means clustering, we could be 95% confident that in case of the

Reuters 200 datasets the results for the accuracy, precision and ARI were undeniably

higher for our proposed technique. The same thing happened when analyzing the

confidence intervals for the recall metric on the 20Newsgroup300 dataset .

To conclude, the presented NSGA II hybridized with the Hill Climbing approach

achieved a very good overall performance on the three used textual subdatasets. Com-

pared to the PCA feature extraction method, it obtained considerably higher scores for

almost all the utilized metrics when using the Spherical K-Means clustering and com-

parable scores when using the classical version of the K-Means. Our proposed solu-

tion also significantly outperformed the FSPSOTC (Feature Selection technique based

on PSO for improving Text Clustering) [14], BGWO (Binary Gray Wolf Optimizer) [15]

and BMVO (Binary Multi Verse Optimizer) [16] state-of-the-art evolutionary unsuper-

vised feature selection techniques for all the used metrics and attained greatly better

results than MHKHA (Membrane-driven Hybrid Krill Herd Algorithm)[17] for the ac-

curacy metric and comparable results for the recall and F1-measure scores.

32

Figure 5.1: Confidence intervals (95%) for all the used metrics, comparing the pro-

posed method (green) with PCA (orange), when using the K-Means clustering and the

Reuters200 dataset

33

Figure 5.2: Confidence intervals (95%) for all the used metrics, comparing the proposed

method (green) with PCA (orange), when using the Spherical K-Means clustering and

the Reuters200 dataset

34

Figure 5.3: Confidence intervals (95%) for all the used metrics, comparing the pro-

posed method (green) with PCA (orange), when using the K-Means clustering and the

20Newsgroup300 dataset

35

Figure 5.4: Confidence intervals (95%) for all the used metrics, comparing the proposed

method (green) with PCA (orange), when using the Spherical K-Means clustering and

the 20Newsgroup300 dataset

36

Figure 5.5: Confidence intervals (95%) for all the used metrics, comparing the proposed

method (green) with PCA (orange), when using the Spherical K-Means clustering and

the Reuters350 dataset

37

5.0.2 Experiments using the distributed proposed method

This section includes several detailed experiments, each one of them having a

different purpose: to test the effectiveness and the correctness of our distributed ap-

proach, to evaluate the proposed parallelized solution on a larger dataset (with 1000

documents) and to evaluate the impact of the proposed method on clustering and clas-

sification.

Experiments to check the effectiveness and the correctness of the distributed imple-

mentation

Although we didn’t measure the exact execution times of our proposed non-

distributed approach, we estimated that between one and two days were needed to

complete one run on one dataset of small size (Reuters200, Reuters350, 20Newsgroup300).

In comparison to this estimation, the execution time for one run for the distributed so-

lution was considerably shorter: less than one hour for each of the three datasets.

We also wanted to test the parallelized solution on a larger dataset with 1000

documents (BBC1000) and discovered that the execution time was also good (approxi-

mately three hours).

To obtain statistically significant results for the run times, we performed 30 iter-

ations for each utilized dataset. The results from table 5.5 show that the distributed

approach was significantly more efficient than the non-parallelized one and that it was

also scalable.

Table 5.5: Execution times of the distributed approach for four datasets

Dataset
Execution time mean

(Execution time stdev)

Reuters200 1874.8557 sec. (265.9606 sec.)

Reuters350 1780.9039 sec. (201.9898 sec.)

20NewsGroup300 2624.1588 sec. (102.9520 sec.)

BBC1000 11866.78420 sec. (357.5364 sec.)

To verify the correctness of the distributed implementation, we compared the

metrics’ values outputted by the parallelized technique with those previously obtained

from the non-parallelized approach. We chose to perform this test on the Reuters350

dataset, as it was the one with the largest number of associated classes (10). When con-

ducting the experiment, we fixed the number of features to 1500, as the results from the

38

non-distributed approach showed very small variations (less than 1%) when changing

the number of features to 1200 or 1800). We used the same hyperparameters and the

same testing conditions when performing the experiment, as the ones presented in

subsection 5.0.1.

Table 5.6: Comparison between the proposed distributed and non-distributed methods

on the Reuters350 dataset using Spherical K-Means for 1500 features

Method Accuracy Precision Recall F1-Measure ARI

Non-distributed proposed method
0.8907

(0.0070)

0.4675

(0.0282)

0.5534

(0.0392)

0.5062

(0.0285)

0.4454

(0.0318)

Distributed proposed method
0.8931

(0.0130)

0.4765

(0.0569)

0.5295

(0.0583)

0.5013

(0.0562)

0.4416

(0.0633)

The table 5.6 highlights the fact that the proposed distributed approach obtained

close results to the ones from the non-distributed technique. This confirmed the ex-

pectations that the distributed solution followed closely the steps performed in the

non-parallelized version.

Experiment evaluating the performance of the distributed version on a large dataset

BBC1000

To perform the tests on the BBC1000 dataset, we followed the same steps de-

scribed in the subsection 5.0.1.

More exactly, in case of our proposed distributed approach we retained only the

chosen features from each document, transformed the documents into vectors using

Doc2Vec, applied the two versions of the K-Means clustering algorithm, and calcu-

lated the specified metrics. In case of PCA, we utilized the Doc2Vec model on the

complete set of documents, then we derived the PCA components by using the scaled

vectors from Doc2Vec and lastly we applied the clustering algorithms on the identified

components to compute the evaluation criteria.

The parameters for the K-Means clustering and for the Doc2Vec model were sim-

ilar to those presented in subsection 5.0.1. To ensure that our results were statistically

significant, we made 30 iterations for PCA and also for our method.

Table 5.7 contains the utilized hyperparameters for the proposed distributed tech-

nique. Because the number of documents in the BBC1000 dataset was significantly

higher compared to the previous corpora, we increased the population size, the maxi-

mum number of generations and the number of iterations for Hill Climbing.

39

Table 5.7: Hyperparameters used for the proposed distributed method when using the

BBC1000 dataset

Parameter Value

pop size 120

min init ch len 10

max init ch len 50

init pop sample cnt 10

init pop big sample size percent 0.4

tournament size 15

max nb of generations 400

L 40

σlim 0.02

nb of iterations Hill Climbing 15

nb neighbours 30

As it can be seen from the table 5.8, when experimenting on the BBC1000 dataset,

the proposed distributed approach was outperformed by PCA when using the K-

Means clustering, but achieved slightly better results when employing the Spherical

K-Means clustering.

To check whether the results of our method were certainly better when using

Spherical K-Means, we also performed t-tests for the mean of all the used metrics (ac-

curacy, precision, recall, f1-measure and ARI), the results being summarized in Figures

5.6 and 5.7.

With a confidence level of 90%, we could state that in the case in which 5000

features were selected, the distributed technique obtained clearly better results for all

the five utilized metrics.

When 3000 or 4000 features were selected or when a level of confidence of 95%

was used, the confidence intervals of the two techniques were partially overlapping.

This meant that no clear conclusion could be drawn, although the scores’ means corre-

sponding to our proposed approach were always considerably higher in value.

In conclusion, our proposed distributed technique outperformed PCA only in

certain situations (for example, when using the Spherical K-Means clustering algo-

rithm to select 5000 features). Apart from that, the results of our method, obtained for

both of the clustering algorithms, were comparative or worse, but still high in value

(∼89% accuracy, ∼72% precision, ∼73% recall, ∼73% F1-measure and ∼66% ARI).

40

Table 5.8: Results of the proposed distributed method on the BBC 1000 dataset

Method
Clustering

algorithm

Nb. of

features
Accuracy Precision Recall F1-measure ARI

3000
0.8872

(0.0183)

0.7115

(0.0466)

0.7309

(0.0408)

0.7210

(0.0437)

0.6504

(0.0553)

4000
0.8886

(0.0182)

0.7152

(0.0462)

0.7337

(0.0414)

0.7243

(0.0438)

0.6545

(0.0552)
K-Means

5000
0.8876

(0.0179)

0.7125

(0.0455)

0.7320

(0.0405)

0.7221

(0.0429)

0.6517

(0.0542)

3000
0.8919

(0.0229)

0.7261

(0.0586)

0.7371

(0.0480)

0.7315

(0.0533)

0.6638

(0.0678)

4000
0.8850

(0.0288)

0.7082

(0.0735)

0.7236

(0.0618)

0.7156

(0.0672)

0.6436

(0.0853)

Proposed

distributed

method Spherical

K-Means
5000

0.8924

(0.0261)

0.7274

(0.0658)

0.7378

(0.0568)

0.7325

(0.0614)

0.6651

(0.0779)

3000
0.9433

(0.0024)

0.8555

(0.0061)

0.8607

(0.0056)

0.8581

(0.0059)

0.8227

(0.0073)

4000
0.9427

(0.0028)

0.8538

(0.0076)

0.8596

(0.0064)

0.8567

(0.0070)

0.8209

(0.0087)
K-Means

5000
0.9428

(0.0025)

0.8540

(0.0065)

0.8598

(0.0058)

0.8569

(0.0061)

0.8211

(0.0076)

3000
0.8767

(0.0510)

0.6871

(0.1299)

0.7094

(0.1147)

0.6978

(0.1222)

0.6204

(0.1543)

4000
0.8758

(0.0452)

0.6848

(0.1151)

0.7050

(0.1031)

0.6945

(0.1090)

0.6167

(0.1374)

PCA

Spherical

K-Means
5000

0.8667

(0.0427)

0.6612

(0.1092)

0.6896

(0.0932)

0.6748

(0.1009)

0.5911

(0.1279)

41

Figure 5.6: Confidence intervals (90%) for all the used metrics, comparing the proposed

distributed method (green) with PCA (orange), when using the Spherical K-Means

clustering and the BBC 1000 dataset

42

Figure 5.7: Confidence intervals (95%) for all the used metrics, comparing the proposed

distributed method (green) with PCA (orange), when using the Spherical K-Means

clustering and the BBC 1000 dataset

43

Experiment evaluating the impact of the proposed distributed method on clustering

and classification

To analyze whether our proposed distributed feature selection technique could

boost the classification and/or the clustering performance, we conducted the follow-

ing experiment: we measured the performance of multiple classifiers and clustering al-

gorithms in two different scenarios: one in which we applied the proposed distributed

feature selection technique beforehand, and another one in which no feature selection

was performed prior to classification/clustering. For implementation, we used the

scikit-learn library 1.

For the experiment, we utilized three classification algorithms (Support Vector

Machine, Logistic Regression, K-Nearest-Neighbors) and three clustering methods (EM,

Hierarchical clustering with Ward similarity and Hierarchical clustering with Average

Linkage similarity). To ensure the accuracy of the experiment, we made sure that we

didn’t select algorithms that performed an implicit feature selection step (for example,

decision tree based strategies like Random Forest and XGBoost).

For each considered dataset, we vectorized the documents using classical TF-

IDF embeddings to eliminate any potential bias that could have been introduced by

more complex models, like Doc2Vec. To realize the evaluation we employed a repeated

stratified k-fold cross-validation, with 4 splits and 10 repeats. Thus, 3 quarters of each

dataset was used for training and one quarter for testing and each fold preserved the

percentage of instances from each class.

Because the sizes of the used datasets were small, we couldn’t make an auto-

matic hyperparameter tuning, as this would have most probably led to overfitting.

Therefore, we manually tuned the hyperparameters, aiming to avoid overfitting and

underfitting scenarios.

Table 5.9 lists the values of the hyperparameters for the used classification and

clustering algorithms in case of the Reuters350 and 20Newsgroup300 datasets. We

included in the table only the hyperparameters for which we modified the default

values offered by the scikit-learn library.

1https://scikit-learn.org/stable/

44

Table 5.9: Classification and clustering hyperparameters used for Reuters350 and

20Newsgroup300 datasets

Method Sklearn hyperparameter

Hyperparameter

value

(Reuters350)

Hyperparameter

value

(20NewsGroup300)

SVM C 0.5 0.5

Log. Regression

solver saga saga

max iter 300 300

penalty elasticnet l1

ratio 0.5 -

KNN n neighbors 15 30

EM n init 10 10

covariance type full (default) diag

In case of the Support Vector Machine (SVM) algorithm, we changed the regu-

larization parameter C from the default 1.0 to 0.5 to make the model more general,

allowing more points to be missclassified and thus avoiding overfitting.

When using the Logistic Regression classifier, for the Reuters350 dataset we chose

the elastic net penalty, combining the strengths of both L1 and L2 regularizations. This

was especially useful as in our case, the number of features (unique terms) was a lot

greater than the number of samples (documents). In this way we could avoid extreme

situations (the model taking into account too few or too many features). The saga

solver was the only one supporting the elastic net penalty. We fixed the number of

maximum iterations to 300, instead of 100, to ensure that the algorithm converged.

When performing experiments for the 20newsgroup300 dataset, we kept the same

parameters for the Logistic Regression model, except for the fact that we only used l1

regularization in order to take into account the large increase in the number of features

(from 3125 for Reuters350 to 10753 for 20newsgroup300).

We fixed the number of neighbors in the K-Nearest-Neighbors algorithm to 15

for Reuters350, a value close to the square root of the total number of instances. For

20newsgroup300, this value was set to 30, as the number of class labels corresponding

to this dataset was considerably higher than the number of class labels for the previous

dataset (10 vs 3).

In case of the EM algorithm, we chose to make 10 initializations of the algorithm

to obtain more stable results. Due to memory issues, we changed the default parameter

45

full for the covariance matrix type to diag when using the 20newsgroup300 dataset.

Table 5.10 describes the impact of the distributed approach on classification and

clustering when using the Reuters350 dataset. The number of features selected by the

proposed parallelized technique was 600.

Our method brought a significant improvement in the scores of the three cluster-

ing methods and mild improvements in the scores of the used classification algorithms,

compared to the case in which no feature selection was made.

Table 5.10: Results highlighting the impact of the distributed proposed method on

classification and clustering for the Reuters350 dataset

Feature

selection

Method

type
Method Accuracy Precision Recall F1 score ARI

SVM
0.8778

(0.0135)

0.9056

(0.0103)

0.8683

(0.0142)

0.8739

(0.0142)

0.7492

(0.0249)

Logistic Regression
0.8960

(0.0177)

0.9092

(0.0181)

0.8888

(0.0183)

0.8904

(0.0192)

0.7910

(0.0266)
Classif.

KNN
0.8004

(0.0176)

0.8224

(0.0155)

0.7887

(0.0254)

0.7819

(0.0304)

0.6363

(0.0329)

EM
0.9184

(0.0108)

0.5953

(0.05351)

0.6181

(0.0403)

0.6062

(0.0463)

0.5608

(0.0524)

Hierarchical (Ward)
0.8792

(0.0218)

0.4391

(0.0621)

0.6072

(0.0466)

0.5075

(0.0511)

0.4414

(0.0610)

Feature

selection

using the

proposed

distributed

method
Clust.

Hierarchical (Average

Linkage)

0.8732

(0.0264)

0.4305

(0.0669)

0.6506

(0.0439)

0.5141

(0.0488)

0.4459

(0.0604)

SVM
0.7938

(0.0054)

0.8796

(0.0047)

0.7653

(0.0061)

0.7785

(0.0062)

0.5775

(0.0088)

Logistic Regression
0.8887

(0.0029)

0.9221

(0.0022)

0.8735

(0.0033)

0.8812

(0.0037)

0.7711

(0.0052)
Classif.

KNN
0.7788

(0.0025)

0.8199

(0.0005)

0.7678

(0.0043)

0.7666

(0.0040)

0.6054

(0.0024)

EM
0.8979

(0.0167)

0.5001

(0.0690)

0.5834

(0.0630)

0.5380

(0.0647)

0.4810

(0.0737)

Hierarchical (Ward)
0.7691

(0.0)

0.2601

(0.0)

0.6928

(0.0)

0.3782

(0.0)

0.2707

(0.0)

No feature

selection

Clust.
Hierarchical (Average

Linkage)

0.8512

(0.0)

0.3672

(0.0)

0.6487

(0.0)

0.4690

(0.0)

0.3901

(0.0)

46

To check that there was indeed a mild improvement brought by our feature se-

lection method when performing classification in case of the Reuters350 dataset, we

realized a statistical testing experiment, the results being contained in figure 5.8. As it

can be observed from the plots, our proposed distributed technique achieved signifi-

cantly higher scores on almost all metrics. The only exception was the precision metric,

for which our method obtained a lower value in case of the logistic regression classifier

and a comparative value in case of KNN.

Figure 5.8: Confidence intervals (95%) for all the 5 used metrics, comparing the impact

of using our feature selection method (green) with using no feature selection (orange),

when using various classification algorithms on the Reuters 350 dataset

47

Table 5.11 highlights the impact of the distributed approach on classification and

clustering when using the 20newsgroup300 dataset. The number of features selected

by the proposed distributed approach was 800.

Table 5.11: Results highlighting the impact of the distributed proposed method on

classification and clustering for the 20newsgroup300 dataset

Feature

selection

Method

type
Method Accuracy Precision Recall F1 score ARI

SVM
0.7742

(0.0721)

0.8126

(0.0626)

0.7757

(0.0718)

0.7759

(0.0719)

0.4418

(0.1355)

Logistic Regression
0.7604

(0.0507)

0.8071

(0.0499)

0.7625

(0.0508)

0.7628

(0.0508)

0.4069

(0.0894)
Classif.

KNN
0.7288

(0.0737)

0.7456

(0.0690)

0.7278

(0.0735)

0.7281

(0.0730)

0.3676

(0.1198)

EM
0.6040

(0.0565)

0.4238

(0.0616)

0.5090

(0.0746)

0.4580

(0.0524)

0.1479

(0.0993)

Hierarchical (Ward)
0.4904

(0.0505)

0.3611

(0.0238)

0.6848

(0.0847)

0.4703

(0.0253)

0.0658

(0.0487)

Feature

selection

using the

proposed

distributed

method

Clust.
Hierarchical (Average

Linkage)

0.3409

(0.0097)

0.3314

(0.0004)

0.9727

(0.0262)

0.4943

(0.0032)

0.0003

(0.001)

SVM
0.6546

(0.0050)

0.8334

(0.0015)

0.6478

(0.0051)

0.6321

(0.0060)

0.2492

(0.0091)

Logistic Regression
0.7378

(0.0024)

0.8405

(0.0015)

0.7423

(0.0024)

0.7403

(0.0024)

0.3517

(0.0062)
Classif.

KNN
0.8845

(0.0020)

0.8974

(0.0021)

0.8831

(0.0020)

0.8832

(0.0021)

0.6807

(0.0047)

EM
0.6001

(0.0268)

0.4286

(0.0532)

0.4553

(0.0569)

0.4413

(0.0539)

0.1074

(0.0814)

Hierarchical (Ward)
0.3682

(0.0)

0.9105

(0.0)

0.3338

(0.0)

0.4885

(0.0)

0.0070

(0.0)

No feature

selection

Clust.
Hierarchical (Average

Linkage)

0.3402

(0.0)

0.3313

(0.0)

0.9735

(0.0)

0.4944

(0.0)

1.745e-05

(0.0)

48

Figure 5.9: Confidence intervals (95%) for all the 5 used metrics, comparing the impact

of using our feature selection method (green) with using no feature selection (orange),

when using various classification and clustering algorithms on the 20newsgroup300

dataset

49

As it can be observed from the table 5.11 and also from Figure 5.9, which contains

the associated statistical tests, our proposed feature selection technique considerably

increased the performance of the SVM model for all the used metrics, when compared

to the situation in which no feature selection was applied.

For Logistic Regression, EM and Hierarchical clustering using the Ward metric,

we can affirm with a level of confidence of 95% that improvements were brought by

our technique only for certain metrics (such as Accuracy, F1 and ARI in case of the

Logistic Regression model, Recall in case of EM and Accuracy, Recall and ARI for Ward

Hierarchical clustering).

For the Average Linkage Hierarchical clustering, our method brought no statis-

tical significant improvements. Lastly, in case of the KNN algorithm, applying no

feature selection yielded better results than applying the proposed feature selection

method.

Conclusions for the experiments using the proposed distributed feature selection

method

The first experiments performed in this section proved that our solution was cor-

rect, efficient and scalable.

The second experiment in which we compared PCA with our method on the

BBC1000 dataset showed that our approach was comparable to PCA and was also able

to considerably outperform this feature extraction technique under certain conditions

(for example, when using the Spherical K-Means clustering algorithm to select 5000

features).

Taking into account the clustering and classification experiments conducted over

both the Reuters350 and the 20newsgroup300 datasets, we can conclude that our pro-

posed distributed features selection method brought, in many cases, a positive impact

when applied before various classification and clustering models (SVM, Logistic Re-

gression, KNN, EM, Hierarchical clustering with the Average and Ward linkages).

50

Conclusions and future improvements

This dissertation paper introduces a novel unsupervised text feature selection

technique that uses the NSGA II multi objective algorithm for a global search (by taking

into account as objective functions an adapted version of the Mean Absolute Difference

relevance score and the Holes Projection Pursuit Index) and Hill Climbing for a local

search (aimed at reducing the redundancy of the groups of features, by computing the

lexical and semantic similarities between the terms in the same subset).

Experiments conducted on multiple textual subdatasets prove that our proposed

solution outperforms three recent and efficient evolutionary feature selection tech-

niques (FSPSOTC, BGWO, BMVO) and reaches performance levels that are higher than

or comparable to those achieved by the Principal Component Analysis feature extrac-

tion method and by another evolutionary approach for feature selection (MHKHA).

We also created a distributed version of the proposed method in Spark and tested

it in various ways. The first type of experiments confirmed that our solution obtains

similar results to the non-distributed one and is efficient and scalable. Another experi-

ment in which we compared our distributed method with PCA on the BBC1000 dataset

demonstrated that our approach yields comparable results, while surpassing PCA sig-

nificantly in specific circumstances. We finally performed an experiment to evaluate

the impact of our approach on classification and clustering, reaching to the conclusion

that our proposed feature selection method has, in many cases, a positive impact on

the metrics’ scores of various classification and clustering models.

Regarding future directions, we intend to generalize our approach by proposing

an efficient evolutionary based solution for the unsupervised feature extraction task.

Another idea of improvement is to hybridize the current NSGA II algorithm with

other metaheuristics. Simulated Annealing seems to be a viable option for local search,

as it could enable our method to easily escape local optima in comparison to Hill

Climbing, introducing however another hyperparameter search for choosing the cool-

ing policy. We could also integrate NSGA II with population-based methods such as

Grasshopper Optimization Algorithm [10] to improve the performance even further.

51

Acknowledgement

Data processing and analysis was realized with the support of project SMIS124759-

RaaS-IS (Research as a Service Iasi), financed using the Operational Competitivity Pro-

gramme. Many thanks to Mr. Cluci Marius-Iulian from the Faculty of Economics and

Business Administration (”Alexandru Ioan Cuza” University) for helping me solve

several issues related to the project configuration and resource management.

52

Bibliography

[1] S. Dang and P. H. Ahmad, “Text mining: Techniques and its application,” Interna-

tional Journal of Engineering & Technology Innovations, vol. 1, no. 4, pp. 22–25, 2014.

[2] J. H. Friedman and J. W. Tukey, “A projection pursuit algorithm for exploratory

data analysis,” IEEE Transactions on computers, vol. 100, no. 9, pp. 881–890, 1974.

[3] C.-h. Chen, W. Härdle, A. Unwin, D. Cook, A. Buja, E.-K. Lee, and H. Wickham,

“Grand tours, projection pursuit guided tours, and manual controls,” Handbook of

data visualization, pp. 295–314, 2008.

[4] S. Hou and P. D. Wentzell, “Re-centered kurtosis as a projection pursuit index for

multivariate data analysis,” Journal of Chemometrics, vol. 28, no. 5, pp. 370–384,

2014.

[5] M. E. Breaban, “Multiobjective projection pursuit for semisupervised feature ex-

traction,” in Applications of Evolutionary Computation: 16th European Conference,

EvoApplications 2013, Vienna, Austria, April 3-5, 2013. Proceedings 16, pp. 324–333,

Springer, 2013.

[6] S. Espezua, E. Villanueva, and C. D. Maciel, “Towards an efficient genetic al-

gorithm optimizer for sequential projection pursuit,” Neurocomputing, vol. 123,

pp. 40–48, 2014.

[7] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.

[8] B. Tran, B. Xue, and M. Zhang, “Variable-length particle swarm optimization for

feature selection on high-dimensional classification,” IEEE Transactions on Evolu-

tionary Computation, vol. 23, no. 3, pp. 473–487, 2018.

[9] M. Labani, P. Moradi, and M. Jalili, “A multi-objective genetic algorithm for text

feature selection using the relative discriminative criterion,” Expert Systems with

Applications, vol. 149, p. 113276, 2020.

[10] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-dominated

sorting genetic algorithm for multi-objective optimization: Nsga-ii,” in Parallel

Problem Solving from Nature PPSN VI: 6th International Conference Paris, France,

September 18–20, 2000 Proceedings 6, pp. 849–858, Springer, 2000.

53

[11] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto

evolutionary algorithm,” TIK-report, vol. 103, 2001.

[12] L. Abualigah and A. J. Dulaimi, “A novel feature selection method for data mining

tasks using hybrid sine cosine algorithm and genetic algorithm,” Cluster Comput-

ing, vol. 24, pp. 2161–2176, 2021.

[13] R. Purushothaman, S. Rajagopalan, and G. Dhandapani, “Hybridizing gray wolf

optimization (gwo) with grasshopper optimization algorithm (goa) for text fea-

ture selection and clustering,” Applied Soft Computing, vol. 96, p. 106651, 2020.

[14] L. M. Abualigah, A. T. Khader, and E. S. Hanandeh, “A new feature selection

method to improve the document clustering using particle swarm optimization

algorithm,” Journal of Computational Science, vol. 25, pp. 456–466, 2018.

[15] A. K. Abasi, A. T. Khader, M. A. Al-Betar, S. Naim, S. N. Makhadmeh, and Z. A. A.

Alyasseri, “An improved text feature selection for clustering using binary grey

wolf optimizer,” in Proceedings of the 11th National Technical Seminar on Unmanned

System Technology 2019: NUSYS’19, pp. 503–516, Springer, 2021.

[16] A. K. Abasi, A. T. Khader, M. A. Al-Betar, S. Naim, S. N. Makhadmeh, and Z. A. A.

Alyasseri, “A text feature selection technique based on binary multi-verse opti-

mizer for text clustering,” in 2019 IEEE Jordan international joint conference on elec-

trical engineering and information technology (JEEIT), pp. 1–6, IEEE, 2019.

[17] L. Abualigah, B. Alsalibi, M. Shehab, M. Alshinwan, A. M. Khasawneh, and H. Al-

abool, “A parallel hybrid krill herd algorithm for feature selection,” International

Journal of Machine Learning and Cybernetics, vol. 12, pp. 783–806, 2021.

[18] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,

S. Venkataraman, M. J. Franklin, et al., “Apache spark: a unified engine for big

data processing,” Communications of the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[19] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary compu-

tation approaches to feature selection,” IEEE Transactions on evolutionary computa-

tion, vol. 20, no. 4, pp. 606–626, 2015.

[20] S. Tabakhi, P. Moradi, and F. Akhlaghian, “An unsupervised feature selection al-

gorithm based on ant colony optimization,” Engineering Applications of Artificial

Intelligence, vol. 32, pp. 112–123, 2014.

[21] A. Gupta, I. S. Rajput, V. Jain, and S. Chaurasia, “Nsga-ii-xgb: Meta-heuristic fea-

ture selection with xgboost framework for diabetes prediction,” Concurrency and

Computation: Practice and Experience, vol. 34, no. 21, p. e7123, 2022.

[22] H. B. Nguyen, B. Xue, P. Andreae, and M. Zhang, “Particle swarm optimisation

with genetic operators for feature selection,” in 2017 IEEE Congress on Evolutionary

54

Computation (CEC), pp. 286–293, IEEE, 2017.

[23] F. Tan, X. Fu, Y. Zhang, and A. G. Bourgeois, “A genetic algorithm-based method

for feature subset selection,” Soft Computing, vol. 12, pp. 111–120, 2008.

[24] A. K. Naik, V. Kuppili, and D. R. Edla, “Efficient feature selection using one-pass

generalized classifier neural network and binary bat algorithm with a novel fit-

ness function,” Soft Computing, vol. 24, no. 6, pp. 4575–4587, 2020.

[25] P. Shamsinejadbabki and M. Saraee, “A new unsupervised feature selection

method for text clustering based on genetic algorithms,” Journal of Intelligent In-

formation Systems, vol. 38, pp. 669–684, 2012.

[26] S.-S. Hong, W. Lee, and M.-M. Han, “The feature selection method based on ge-

netic algorithm for efficient of text clustering and text classification,” International

Journal of Advances in Soft Computing & Its Applications, vol. 7, no. 1, 2015.

[27] N. Kushwaha and M. Pant, “Link based bpso for feature selection in big data text

clustering,” Future generation computer systems, vol. 82, pp. 190–199, 2018.

[28] B. Nakisa, M. Z. Ahmad Nazri, M. N. Rastgoo, and S. Abdullah, “A survey: Par-

ticle swarm optimization based algorithms to solve premature convergence prob-

lem,” Journal of Computer Science, vol. 10, no. 9, pp. 1758–1765, 2014.

[29] Y. Lu, M. Liang, Z. Ye, and L. Cao, “Improved particle swarm optimization algo-

rithm and its application in text feature selection,” Applied Soft Computing, vol. 35,

pp. 629–636, 2015.

[30] C. Paduraru, M.-C. Melemciuc, and A. Stefanescu, “A distributed implementa-

tion using apache spark of a genetic algorithm applied to test data generation,”

in Proceedings of the Genetic and Evolutionary Computation Conference Companion,

pp. 1857–1863, 2017.

[31] Y. Vivek, V. Ravi, and P. R. Krishna, “Parallel bi-objective evolutionary algorithms

for scalable feature subset selection via migration strategy under spark,” arXiv

preprint arXiv:2205.09465, 2022.

[32] F. Maqbool, S. Razzaq, J. Lehmann, and H. Jabeen, “Scalable distributed genetic

algorithm using apache spark (s-ga),” in Intelligent Computing Theories and Appli-

cation: 15th International Conference, ICIC 2019, Nanchang, China, August 3–6, 2019,

Proceedings, Part I 15, pp. 424–435, Springer, 2019.

[33] H.-C. Lu, F. Hwang, and Y.-H. Huang, “Parallel and distributed architecture of

genetic algorithm on apache hadoop and spark,” Applied Soft Computing, vol. 95,

p. 106497, 2020.

[34] C. Lam, Hadoop in action. Simon and Schuster, 2010.

[35] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, et al., “Spark:

55

Cluster computing with working sets.,” HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[36] J. J. Durillo, A. J. Nebro, F. Luna, and E. Alba, “A study of master-slave ap-

proaches to parallelize nsga-ii,” in 2008 IEEE international symposium on parallel

and distributed processing, pp. 1–8, IEEE, 2008.

[37] A. Verma, X. Llora, D. E. Goldberg, and R. H. Campbell, “Scaling genetic algo-

rithms using mapreduce,” in 2009 Ninth International Conference on Intelligent Sys-

tems Design and Applications, pp. 13–18, IEEE, 2009.

[38] C.-J. Ye and M.-X. Huang, “Multi-objective optimal power flow considering tran-

sient stability based on parallel nsga-ii,” IEEE Transactions on Power Systems,

vol. 30, no. 2, pp. 857–866, 2014.

[39] C. Hu, G. Ren, C. Liu, M. Li, and W. Jie, “A spark-based genetic algorithm for sen-

sor placement in large scale drinking water distribution systems,” Cluster Com-

puting, vol. 20, pp. 1089–1099, 2017.

[40] L. Alterkawi and M. Migliavacca, “Parallelism and partitioning in large-scale gas

using spark,” in Proceedings of the Genetic and Evolutionary Computation Conference,

pp. 736–744, 2019.

[41] V. S. Jonnalagadda, P. Srikanth, K. Thumati, S. H. Nallamala, and K. Dist, “A

review study of apache spark in big data processing,” International Journal of Com-

puter Science Trends and Technology (IJCST), vol. 4, no. 3, pp. 93–98, 2016.

[42] Z. Jiang, B. Gao, Y. He, Y. Han, P. Doyle, and Q. Zhu, “Text classification using

novel term weighting scheme-based improved tf-idf for internet media reports,”

Mathematical Problems in Engineering, vol. 2021, pp. 1–30, 2021.

[43] O. Roudenko and M. Schoenauer, “A steady performance stopping criterion for

pareto-based evolutionary algorithms,” in 6th International Multi-Objective Pro-

gramming and Goal Programming Conference, 2004.

[44] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,”

in International conference on machine learning, pp. 1188–1196, PMLR, 2014.

[45] L. Meng, R. Huang, and J. Gu, “A review of semantic similarity measures in word-

net,” International Journal of Hybrid Information Technology, vol. 6, no. 1, pp. 1–12,

2013.

[46] I. S. Dhillon and D. S. Modha, “Concept decompositions for large sparse text data

using clustering,” Machine learning, vol. 42, pp. 143–175, 2001.

[47] C. Gatu, “Special Chapters on Artificial Intelligence - Lecture 2 (Probability and

Statistics.” https://profs.info.uaic.ro/˜cgatu/sc/, 2023. [Online; ac-

cessed 31-March-2023].

56

https://profs.info.uaic.ro/~cgatu/sc/

	Introduction
	Related work
	Nature inspired methods for solving the text feature selection task
	Review of nature inspired techniques for addressing the text feature selection problem
	Our contribution

	Methods and strategies for parallelizing NSGA-II and GA evolutionary techniques
	Classic models of parallelization for Genetic Algorithms
	Review of parallel computing techniques for GA and NSGA II
	Our contribution

	Used datasets and preprocessing steps
	Used datasets
	Non-distributed preprocessing steps
	Parallelized preprocessing steps

	Proposed unsupervised text feature selection method
	Global search using NSGA II
	Population initialization and stopping condition
	NSGA II objective functions
	Crossover and mutation operators
	Local search using Hill Climbing. Final selected subset of features

	Parallelized version in Spark of the proposed method
	Cluster architecture and configurations
	Pseudo-code of the distributed algorithm
	Broadcasted data
	Population initialization and stopping condition
	Population evaluation. Determining the fronts
	Crowding sorting and selection
	Crossover and mutation operators
	Local search using Hill Climbing. Final selected subset of features

	Experiments for the classic and parallelized proposed methods
	Experiments for the classic (non-distributed) proposed method
	Experiments using the distributed proposed method

	Conclusions and future improvements
	Bibliography

