
Transformers – an in-depth tutorial 
Part I: Transformer’s architecture 

Laura-Maria Cornei 

Feb 2023 

 

Table of Contents 

1. Introduction .............................................................................................................................................. 2 

1.1. Motivation .......................................................................................................................................... 2 

2. Architecture .............................................................................................................................................. 3 

2.1. General overview ............................................................................................................................... 3 

2.2. Input preprocessing ........................................................................................................................... 9 

2.2.1. Overview ..................................................................................................................................... 9 

2.2.2 Tokenization ............................................................................................................................... 11 

2.2.3. Positional encoding ................................................................................................................... 12 

2.3. The attention mechanism ................................................................................................................ 16 

2.3.1. Intuitive explanation of the (self-)attention mechanism .......................................................... 16 

2.3.2. Self-attention and attention in the transformer architecture .................................................. 22 

2.3.3. Multi-head attention................................................................................................................. 28 

2.4. Feed Forward Networks, layer normalizations and residual connections....................................... 30 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

1. Introduction 

1.1. Motivation 

Transformers were introduced [1] as neural network models that can solve 

transduction and sequence modelling tasks (such as machine translation, language 

modelling, etc.); they achieved a better performance and were more parallelizable 

than existent state-of-the-art models (recurrent neural networks and convolutional 

networks).   

Recurrent neural networks process the input sequentially, so parallelization is not 

possible. Moreover, even improved versions, such as LSTM and GRU, struggle with 

modelling long term dependencies between elements from the input. Furthermore, 

there is no explicit modelling of the learned dependencies. 

Convolutional neural networks model the local context and many layers are required 

to model the long-term dependencies.  

Nowadays, transformers are used in various NLP tasks (text generation, text 

summarization, question answering, entailment, machine translation, etc.) and are 

also becoming more popular in fields such as computer vision [2]. 



2. Architecture 

2.1. General overview 

The classic architecture of a transformer consists of an encoder, represented by a 

stack of N encoder blocks/layers, and a decoder, represented by a stack of N decoder 

blocks/layers.  

First, we will make a short remark regarding the data preprocessing step, that will 

be useful when explaining the encoder-decoder interaction later. As it is highlighted 

in Figure 1, the data received by the encoder, as well as the data given to the decoder 

through source (**) are preprocessed in the following way: each input is replaced by 

some associated embeddings (word vector representations) and then a positional 

encoding is inserted in the word vector representations to form the final embeddings. 

The preprocessing steps will be explained later in the next sections. For now, we will 

refer to this type of preprocessing by saying that some data is P.E.E. (positional 

encodings in the embeddings) processed. 

 

Figure 1. Transformer’s architecture 



 

 

 

 

Before diving into more detailed explanations, it is worth mentioning the purpose of 

the encoder and the decoder. To illustrate this better with an example, we will 

assume the transformer solves the Romanian to English machine translation task. 

The whole procedure is illustrated in Figures 2 and 3.  

The encoder takes as input a P.E.E. processed sentence (/sequence of words) in 

Romanian (that needs to be translated in English) and outputs a contextualized 

representation of this sentence. This contextualized representation is able to capture 

the syntactic and semantic dependencies between the words from the given sentence. 

The decoding phase starts after the encoding phase finishes. 

The decoder receives this contextualized representation from the encoder as input 

(input marked with ‘*’ in Figures 1 and 2) and also receives a sequence of P.E.E. 

processed words as input (input marked with ‘**’ in Figures 1 and 2). This sequence 

of words (‘**’) initially contains only one processed start symbol <SOS>, 

corresponding to the start of the sentence to be generated as a translation. At each 

time step, the decoder receives as input a sequence of processed words and outputs 

one word in English; next, this word in English is P.E.E. processed and appended to 

the sequence of other processed words to form the input of the decoder for the next 

time step. The decoder stops outputting words when it outputs an <EOS> (End Of 

Sentence) tag. To sum up, the decoder uses the contextualized representation of the 

sentence in Romanian and the representation of the translated sentence in English 

generated so far to predict the next word that should be added to the English 

translation.  



 

Figure 2. Transformer applied to machine translation task - high level overview 



 

Figure 3. The process of decoding detailed for the machine learning task - high level overview 

 

Next, we will look in more detail at how the transformer processes the inputs and 

generates the outputs, considering the interactions between the encoder and the 

decoder layers. These interaction details are also illustrated in Figure 4. 



As it was mentioned before, the encoder receives multiple P.E.E. processed inputs 

at once. In case of our task, the inputs are represented by the words corresponding 

to the Romanian sentence that we aim to translate in English. Let’s assume the input 

size (in our case, the number of words from the input) is n. A P.E.E. processed input 

is represented by an embedding that incorporates information about that input and 

its position in the sequence. 

First, the processed inputs are passed through the stack of encoder layers as follows: 

each encoder block receives n inputs and outputs n elements which represent the 

contextual representations (/contextual embeddings) of the given inputs; the 

elements outputted by the 𝑖𝑡ℎ encoder block are given as inputs to the 𝑖 + 1𝑡ℎ 

encoder block. The purpose of an encoder layer is to extract a new representation of 

its given inputs, such that any new representation of an input combines the previous 

input representation with contextual information relevant to that input. The first 

encoder layers model less complex aspects of the language (for example trivial 

dependencies between words), while the final encoder layers model more 

sophisticated aspects of the language (for example semantics).    

The decoding phase starts only when the encoding phase is over. The outputs from 

the final encoder block (which represent the final contextual representations of the 

inputs) will be given as input to the Mult-Head Attention subcomponent of each 

decoder block. This type of input is marked with ‘*’ in Figures 1, 2, 3 and 4. 

The decoder also receives a sequence of P.E.E. processed elements as input. This 

type of input is marked with ‘**’ in Figures 1, 2, 3 and 4. The sequence of elements 

initially contains only one element: the embedding of a special tag, <SOS> (Start of 

Sentence). At each time step, a sequence of elements is passed through the stack of 

decoder blocks and next through a linear layer and a Softmax layer, resulting in the 

decoder generating an element (in our case, a word in English). To summarize, at 

one time step, the decoder receives as input a sequence of elements and outputs one 

element.  

Next, this outputted element is P.E.E. processed and will be appended to the input 

(**) given to the decoder in the following time step. The decoder is autoregressive, 

meaning that it uses previous outputted information as input for the current step. 

More exactly, it appends the element generated as output at the 𝑖𝑡ℎ time step (after 

processing it) to the sequence of processed elements given as input for the 𝑖 + 1𝑡ℎ 

time step.  



Next, we will discuss about how the information is passed through the decoder 

blocks and the purpose of the linear and Softmax layers that follow the stack of 

decoders. Passing the processed sequence of elements (**) through the stack of 

decoder blocks results in obtaining contextualized representations (/contextualized 

embeddings) of them, that also incorporate information related to the inputs from 

the encoder (*). The linear layer, which is a simple fully connected neural network, 

projects these contextualized representations into a large vector of scores with the 

size of the vocabulary (in our case, the size of the vocabulary is equal to the number 

of English words in the vocabulary). The Softmax layer transforms the scores from 

this vector into probabilities. Thus, the probability from the 𝑖𝑡ℎ position in the final 

obtained vector corresponds to the probability that the  𝑖𝑡ℎ element from the 

vocabulary is generated by the decoder.  

If a greedy approach is used, the decoder generates as output the element (the English 

word) corresponding to the position in the vector which has associated the highest 

probability. This classical greedy strategy of choosing the generated word is a simple 

one, however the final outputted sequence might not have the highest overall 

probability, even if the individual words are chosen as having maximal probabilities. 

Authors of the original paper [1] use a beam search strategy to select the outputted 

word at each time step. This strategy takes into account multiple hypothesis 

(multiple partial translations that could be generated). To avoid a complexity 

explosion, the least likely hypothesises are pruned. Beam search does not guarantee 

that the decoder generates the most likely sequence, but it improves a lot the 

performance of the model. 

Figure 4 describes the discussed process (the greedy approach for selecting the final 

word is used). 



 

Figure 4. Transformer applied to machine translation task - lower-level overview 

2.2. Input preprocessing 

2.2.1. Overview  

We previously mentioned that transformers take as input a P.E.E. processed 

sequence of tokens. We will highlight the steps used to transform the input served 

to the transformer considering the machine translation example. More details 

regarding the preprocessing steps can be found for example in the Hugging Face 

(library for working with transformers) documentation [3].  

In case of the machine translation task, the input given to the transformer at one time 

step is a preprocessed sentence/paragraph in Romanian that needs to be translated. 

The sentence/paragraph is passed through the following steps to yield the final input 

served to the transformer:  

• Tokenization. The paragraph is split into tokens using a tokenizer. Subsection 

2.2.2. details types of used tokenizers (word-based, subword-based, character-

based). 



• Padding and/or truncation. The input length (number of tokens) that can be 

given at one step to the transformer is bounded to a maximum length (for e.g., 

512, 1024, etc.) to avoid memory and efficiency issues. However, from a 

theoretical standpoint, transformers can work with unlimited sequence 

lengths. If a sequence of tokens is longer than the maximum admitted length 

it can be truncated. 

The transformer architecture can receive as input tokenized sequences of 

varying lengths, one sequence at each time step. However, if we want to 

increase the computational efficiency by processing multiple sequences at 

once (batch processing), sequences should be padded with a special token to 

reach the length of the longest sequence in the batch; this is due to 

implementation and optimization considerations.  

• Replacing each token with its embeddings. Each resulted token from the 

sequence is replaced with a vector representing an embedding for that token. 

This embedding can be a static, previously learned one (for example a 

Word2Vec or a GloVe embedding), but more commonly the embedding is 

learned through the training procedure. All embedding vectors have the same 

size, let it be 𝑑𝑚𝑜𝑑𝑒𝑙. The purpose of this step is to convert each token into a 

word vector representation that captures the meaning of the token. 

• Positional encoding integrated in the embeddings. Transformers do not 

inherently take into account the position of the tokens in a sequence given as 

input (as opposed to recurrent neural networks, which encapsulate 

information about tokens’ order by processing one token from a sequence at 

a time). Thus, positional encoding is used as a mechanism to embed the 

tokens’ order in the final input given to the transformer. Section 2.2.3 

describes in more detail the positional encoding step. Simply put, each token 

is associated a positional encoding describing the position of the token in the 

sequence. The positional encoding of a token is a vector of size 𝑑𝑚𝑜𝑑𝑒𝑙. The 

final embedding associated to a token is the summation of two vectors: the 

positional encoding vector and the token’s embedding; therefore, it also has 

size 𝑑𝑚𝑜𝑑𝑒𝑙.  

 In the end, after passing the input (in our case the sentence/paragraph in Romanian) 

through the preprocessing steps described above, we get a sequence of final 

embeddings. Each final embedding corresponds to a token and is calculated as the 

sum between the positional encoding of the token and the token’s embedding. These 



final embeddings will be served as input to the transformer (all at one time step). 

The preprocessing flow is highlighted in Figure 5. 

 

Figure 6. Summary of the preprocessing steps for an NLP task to obtain the input for a transformer 

 

2.2.2 Tokenization 

 The tokenization can be word-based (split text to obtain words), character-based 

(split text to obtain characters) or subword-based (split text to obtain subwords). The 

word-based tokenization produces a very big vocabulary when used on a large text 

corpus; this may lead to increased time complexity and memory issues. The 

character-based tokenization reduces greatly the vocabulary size, but comes with a 

loss of performance, making it harder for the model to learn meaningful 

representations. 

 The subword-based tokenization brings the advantages of the two other types 

together, meaning that it produces a reasonable vocabulary size and it also enables 

the model to learn meaningful representations; infrequent words are decomposed 



into more meaningful, frequent subwords (for e.g., “learning” -> “learn” + “ing”). 

Example of commonly used subword-based tokenizers are WordPiece, Unigram and 

Byte-Pair Encoding. It is important to notice that the results from the subword 

tokenization vary depending on the corpus, as they are influence by the words and 

subwords frequencies.  

 Figure 6 illustrates an example of the three types of tokenizers applied over a 

custom sentence: “I am learning about transformers!”.  

 

Figure 6. Example of applying various types of tokenizers as a preprocessing step 

 

 

2.2.3. Positional encoding 

The positional encoding models the position of each token in the sequence, such that 

the transformer model can have access to the tokens’ order information. The 

positional encoding incorporates only information regarding the position of the 

token in the sequence and doesn’t take into account any information regarding the 

token itself.  

The positional encoding proposed in the original paper [1] satisfies two 

requirements: 

1. Tokens on different positions in a sequence should have different positional 

encodings and tokens having the same position in different sequences should 

have the same positional encoding. This is a natural requirement, as a 

positional encoding should uniquely identify a position. 



2. The positional encoding should be bounded, more exactly the value(s) 

representing the positional encoding shouldn’t get very large (regardless of 

the processed sequence length!).     

Next, we will justify why requirement 2 is necessary by discussing about the 

relationship between semantic embeddings (noted with 𝐸) and positional encodings 

(noted with 𝑃).  

As it was previously mentioned, each token is associated with a semantic embedding 

(𝐸𝑖) that models the position of the token in a 𝑑𝑚𝑜𝑑𝑒𝑙 dimensional semantic space. 

Thus, tokens indicating words which are semantically related (for e.g., “sea” and 

“sand”) appear closer to one another in this space than unrelated tokens (for e.g., 

“sea” and “cat”).  

 

Figure 7. Example of visualization of the semantic embeddings in a 3D space 

Each token is also associated with a positional encoding (𝑃𝑖)  that models the position 

of the token in a 𝑑𝑚𝑜𝑑𝑒𝑙 dimensional space, such that all tokens appearing first in a 

sequence will have the same positional encoding, all tokens appearing second in a 

sequence will also have the same positional encoding, etc.  

By adding up the semantic embedding of a token with its positional encoding we 

create a new vector in the 𝑑𝑚𝑜𝑑𝑒𝑙 dimensional space, that takes into account both the 

meaning and the position of the token in the sequence.  

If the vectors denoting the positional encodings have a very large modulus (i.e., the 

values in the vectors are too large), then the influence of the positional encoding 

vectors on the final embedding vectors will be too big, overshadowing the 

importance of the semantic embeddings. Thus, unrelated words might end up having 



similar final embeddings, which could hurt the model’s ability to understand the 

semantics.  

To illustrate this with an example (Figure 8), suppose the token "sand" appears in 

two sequences processed by the transformer. In the first sequence it appears on 

position 𝑖 and in the second sequence it appears on position 𝑗. If we note with 

𝐸1 tokens in the first sequence and with 𝐸2 tokens in the second sequence, then the 

semantic embedding for the token "sand" is 𝐸1𝑖 = 𝐸2𝑗 (we have equality because it 

is the semantic embedding for the same token, but in different sequences). The 

positional encoding for the token “sand” is 𝑃𝑖  for the first sequence, as the token 

sand is the 𝑖𝑡ℎ token in the sequence and 𝑃𝑗 for the second sequence. Therefore, the 

final embedding for the token “sand” will be 𝐸1𝑖 + 𝑃𝑖 for the first sequence and 

𝐸2𝑗 + 𝑃𝑗 for the second sequence. Figure 8 highlights the fact that the same token 

(“sand”) can have different final embeddings based on its position in a text.  

Suppose now that the modulus of the positional encoding for the 𝑖𝑡ℎ position in a 

sequence is very large. In Figure 8, this new positional encoding vector is called 

“hypothetical 𝑃𝑖”. We can see that the final embedding of the token “sand” in 

sequence 1 (called “hypothetical E1i + 𝑃𝑖”) is highly skewed away from the initial 

semantic embedding (𝐸1𝑖), becoming too close to the semantic embedding of an 

unrelated token (“cat”). 

  



 

 Figure 7. Example of visualization of the semantic embeddings and positional encodings                        

(to demonstrate the need for bounded positional encodings)  

 

To satisfy requirements 1 and 2, authors of [1], proposed a positional encoding that 

is represented by a vector of size 𝑑𝑚𝑜𝑑𝑒𝑙 (where 𝑑𝑚𝑜𝑑𝑒𝑙 is an even number). The 

formula used to calculate the positional encoding for the 𝑖𝑡ℎ token in a sequence is: 

𝑝𝑖 = 

[
 
 
 
 
 
 
 
 
 

sin(𝑤1 ∗ 𝑖)

 cos(𝑤1 ∗ 𝑖)

sin(𝑤2 ∗ 𝑖)

cos(𝑤2 ∗ 𝑖)
⋮

sin (𝑤𝑑𝑚𝑜𝑑𝑒𝑙
2

∗ 𝑖)

 cos (𝑤𝑑𝑚𝑜𝑑𝑒𝑙
2

∗ 𝑖)
]
 
 
 
 
 
 
 
 
 

                                             (1) 

where                                     

                                                       𝑤𝑘 =
1

10000

2𝑘
𝑑𝑚𝑜𝑑𝑒𝑙

                                              (2) 

 



 

Working with a single bounded non-periodical function would have led to different 

positional encodings for the same position for different sequence lengths, thus 

violating requirement 1.   

Working with a single bounded periodical function would have led in some cases to 

the same positional encoding for different positions in a sequence, again breaking 

requirement 1.   

Therefore, the solution is to use multiple periodical functions to define the positional 

encodings.  

The authors chose to use the sine and cosine functions as they are bounded (thus, 

satisfy requirement 2) and have high variability (this is used to obtain unique 

positional encodings for each position). To ensure that the positional encodings are 

unique, authors proposed the use of sine and cosine functions with different 

frequencies. Lower frequencies are used to describe broadly the position of the token 

in the sequence, while higher frequencies give more details regarding the exact 

position in the sequence. Author of [4] also compares these frequencies with the 

binary encoding, describing that high frequencies could be associated with less 

significant bits, while low frequencies could be associated with more significant bits. 

[4] contains other interesting details regarding the properties of the positional 

encoding chosen by authors of [1], such as the ability to attend relative positions. 

 

2.3. The attention mechanism 

2.3.1. Intuitive explanation of the (self-)attention mechanism 

One of the fist neural network models in which the attention mechanism was 

integrated (to improve the model and to avoid an information bottleneck) were the 

Sequence-to-sequence models. We will not go into details about these models, 

however, for those interested, [5] represents a good lecture about them. 

The attention mechanism enables the transformer to model dependencies between 

the tokens in a sequence 𝐴 and tokens in a sequence 𝐵; thus, it helps the transformer 

to focus on important relations, while ignoring other irrelevant things. The detected 

dependencies have associated attention scores that indicate the strength of the 



relation/the intensity of the “focus”. If sequence 𝐴 is the same as sequence 𝐵, then 

the mechanism is called self-attention.  

Figure 8 is an example taken from [5], which indicates the attention scores assigned 

using the attention mechanism in case of a French (il m’a entarté) to English (he hit 

me with a pie) machine translation task. Dark colours indicate higher attention 

scores. We can clearly see that the word “il” is strongly associated with “he”, while 

the word “entarté” is strongly associated with “with a pie”, fairly associated with 

“hit” and mildly associated with “me”. 

 

Figure 8. Example of attention matrix for the French to English MT task 

 

Figure 9 describes an example of self-attention, used to detect dependencies in the 

sentence: “She unwrapped the birthday gift”: 

 

Figure 9. Example of self-attention dependencies and associated matrix 



One important consideration about attention is that it can help modelling relations 

between tokens regardless of the distances between them. Searching for 

dependencies only in a well-defined neighbourhood would have brought several 

drawbacks: 

• Proximity doesn’t guarantee syntactic or semantic relatedness. For example, 

in the sentence “She started painting the walls in blue” there is no strong 

connection between the word “walls” and the word “blue” or between the 

word “She” and the word “the”, even though they are in proximity.  

• Some languages have free word order, meaning that there are many 

possibilities of reordering the words such that the meaning remains the same, 

so in this case the neighbourhood would vary depending on the reordering. 

 

Next, we will explain how to determine the attention scores that indicate the strength 

of the dependency between different tokens.  

First, we need a way to measure the relatedness between the tokens’ representations. 

Let’s consider that each token is represented through its embedding resulted from 

the P.E.E. processing. We already know that these representations incorporate 

information related to the meaning and the position of the tokens. Thus, we could 

think of the dimensions of these embeddings as describing semantic features and/or 

positional information. Words with a strong dependency on one another will have 

embeddings with close values for multiple dimensions.  

To give an oversimplified example, the dependency between “university” and  

“student” is stronger than the dependency between “university” and “cat”; this 

happens because these words have more resembling values for one or multiple 

dimensions that encode features related to semantical aspects, such as: education, 

career, academia, etc.; moreover, these words might occur on consecutive 

(“university student”) or very close positions and this also contributes to making the 

embeddings of these two words more alike. Figure 10 intuitively describes this idea: 



 

Figure 10. Dummy example to explain the meaning of the embeddings’ dimensions 

 

 

One of the most classic types of attention mechanisms is the dot-product based 

attention which uses the dot product to calculate the attention scores. The attention 

score 𝑠𝐴𝐵 that measures the degree of dependence between two embeddings 𝐴 and 

𝐵 is equal to the dot product between the two vectors. The dot product between two 

embeddings is defined as the sum of the products of their components and also as 

the cosine of the angle θ between the vectors multiplied by their norms: 

𝑠𝐴𝐵 =  𝐴 ∙ 𝐵 =  ∑ 𝐴𝑘
𝑛
𝑘=1 ∙ 𝐵𝑘 = cos θ ∙ ‖𝐴‖ ∙ ‖𝐵‖                              (3) 

 

Notice that there is a strong connection between the dot product and the cosine 

similarity (the last being equal to cos θ). A high dot product value between 

𝐴 and 𝐵 indicates a strong dependency between the tokens, while a small/negative 

value indicates little to no dependency.  



Let’s suppose we have an embedding 𝑄𝑖 and a set of embeddings 𝑋1, 𝑋2, … , 𝑋𝑛. To 

determine the degree to which 𝑄𝑖 is syntactically and semantically related to the 

other embeddings, we can determine the attention scores 𝑠𝑄𝑖𝑋𝑗
 with formula (3).  

In order to interpret better the attention scores given by the dot product, 

normalization using the Softmax function can be used to bring the values of these 

scores in range [0,1]. The normalized attention scores represent the attention 

distribution αQi
: 

                      𝛼𝑄𝑖𝑋𝑗
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑠𝑄𝑖𝑋𝑗

) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝑖 ∙ 𝑋𝑗) , for j=1, 𝑛               (4) 

where  

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣) = [𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣1), … , 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣𝑛)]                     (5) 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣𝑖) =  
𝑒𝑣𝑖

∑ 𝑣𝑘
𝑛
𝑘=1

                                            (6) 

 

The normalized attention score 𝛼𝑄𝑖𝑋𝑗
 can be interpreted as the probability/ the degree 

to which there is a dependency between 𝑄𝑖  and 𝑋𝑗. We can build a contextualized 

representation (/contextualized embedding) of Qi by summing the products between 

each embedding 𝑋𝑗  and its associated normalized attention score: 

𝐶𝑄𝑖 = ∑ 𝑋𝑗 ∙ 𝛼𝑄𝑖𝑋𝑗
 𝑛

𝑗=1                                                (7) 

This contextualized representation 𝐶𝑄𝑖 is a way of expressing Qi based on the 

vectors 𝑋1, 𝑋2, … , 𝑋𝑛, by giving higher weights (𝛼𝑄𝑖𝑋𝑗
) to embeddings 𝑋𝑗 that are 

strongly related (syntactically and semantically) to Qi. 

Let’s summarizes the steps for determining a contextualized representation for the 

vector Qi, given 𝑋1, 𝑋2, … , 𝑋𝑛: 

i. Calculate the attention scores 𝑠𝑄𝑖𝑋𝑗
 by multiplying each vector 𝑋𝑗 to Qi. In this 

context, embeddings 𝑋𝑗 are called keys, while Qi is called query. 

ii. Determine the attention distribution αQi
 by applying Softmax over the 

attention scores  



iii. Determine the contextualized embedding for Qi, 𝐶𝑄𝑖, by summing the 

products between each pair of normalized attention score 𝛼𝑄𝑖𝑋𝑗
 and vector 𝑋𝑗. 

In this context, the embeddings 𝑋𝑗 are called values. 

Please note that the final contextualized embedding 𝐶𝑄𝑖 has the same size as the 

embeddings representing the values.  

Figure 11 describes this process of determining a contextualized representation for 

an embedding Qi: 

 

Figure 11. Process of determining the contextualized representation for an embedding Qi 

The above-described procedure can be done for multiple queries: 𝑄1𝑄2, … , 𝑄𝑚, 

resulting 𝑚 contextualized embeddings 𝐶𝑄1𝐶𝑄2, … , 𝐶𝑄𝑚. Please note that the 

process for calculating the contextualized representation for each query can be done 

completely independently of the other queries and thus can be parallelized. 

The “key, value, query” names describe different functions of the embeddings. 

Usually, the values and the keys are represented by the same embeddings 

(𝑋1, 𝑋2, … , 𝑋𝑛), as in the presented case.  In case of attention mechanism, the queries 

(𝑄1𝑄2, … , 𝑄𝑚) are different from the keys (𝑋1, 𝑋2, … , 𝑋𝑛), while in self-attention the 

queries and the keys are represented by the same embeddings. Therefore, in case of 

self-attention, the same embeddings (𝑋1, 𝑋2, … , 𝑋𝑛) play three different roles: keys, 

queries and values. 



[6] provides a very good analogy between the usage of keys, queries and values in 

the attention mechanism and the retrieval process for recommendation systems: 

“when you search for videos on Youtube, the search engine will map 

your query (text in the search bar) against a set of keys (video title, description, etc.) 

associated with candidate videos in their database, then present you the best matched 

videos (values).” It is also mentioned that in a search in which only one instance 

(one value) is retrieved, the attention distribution α is a one hot vector. In general, 

the attention distribution “proportionally retrieves” values based on their 

resemblance to the query (𝑄𝑖). The resemblance to the query is given by the attention 

scores.  

2.3.2. Self-attention and attention in the transformer architecture 

Figure 12 summarizes the three attention mechanisms used inside the transformer’s 

architecture: 

 

• The self-attention mechanism from the encoder  

• The self-attention mechanism from the decoder  

• The attention mechanism from the decoder 

 

Figure 12. Types of attention mechanism used in the transformer’s architecture 

 



The self-attention mechanism from the encoder converts a set of embeddings 

𝑋1, 𝑋2,… , 𝑋𝑛 (resulted from the P.E.E. processing of the tokens from the input 

sentence) into a set of contextualized embeddings 𝐶𝑋1, 𝐶𝑋2, … , 𝐶𝑋𝑛. Note that 

according to notations from the previous section, 𝑋𝑖 = 𝑃𝑖 + 𝐸𝑖 , 𝑓𝑜𝑟 𝑖 = 1, 𝑛̅̅ ̅̅ ̅ . The 

association between the original embeddings and the contextualized representations 

is 1:1. In case of the machine translation task, the resulted contextualized 

embeddings represent an encoding of the sentence in the source language, as these 

representations capture information regarding the syntactic and semantic 

dependencies between the tokens of the source sentence.  

The (masked) self-attention mechanism from the decoder has the same purpose as 

the previous mechanism, but this time works on the inputs (**) given to the decoder, 

instead on the inputs given to the encoder. Therefore, this self-attention mechanism 

outputs a contextualized representation of the partial translation fed to the decoder, 

which captures the syntactic and semantic relations between the tokens from the 

partial translation. This type of attention is masked; we will discuss about masking 

at the end of this section, after we introduce some new notions.  

 

Figure 13 summarized the general idea behind the two self-attention previously 

discussed mechanisms used by the transformer. Notice that in case of self-attention, 

the keys, the queries and the values are represented by the same embeddings 

(𝑋1, 𝑋2,… , 𝑋𝑛).  

 

Figure 13. Self-attention in the transformer architecture – general idea 



The attention mechanism from the decoder, also named encoder-decoder attention 

uses: 

• as keys and also as values the contextualized representations (that encode the 

sentence in the source language) outputted by the encoder. Note that the same 

embeddings are used for keys, as well as for the values. 

•  as queries the contextualized representations (that describe a partial 

translation in the target language) outputted by the decoder.  

 

Because it uses two different embedding sequences (one outputted by the encoder 

and one outputted by the decoder) this type of attention is also called cross-attention.  

This attention mechanism is also illustrated in the Figure 14 below (notations: K for 

keys, 𝑉 for values and 𝑄 for queries):  

 

 

Figure 14. Encoder-decoder attention– general idea 

 

The transformer uses the attention mechanism differently that what we have seen 

earlier in section 2.3.1.  

The first difference is that it separates the three roles that an embedding can have: 

key, query and value, by learning the weights of three different matrices: 

𝑊𝑘,𝑊𝑄 𝑎𝑛𝑑 𝑊𝑣. Each matrix corresponds to a different key/query/value layer.  



The second difference is that it determines all contextualized embeddings for all 

queries in parallel, by using matrix multiplication operations. 

Before describing in detail the (self)-attention mechanism used by the transformer, 

we need to introduce some notations. 

All embeddings representing the keys are grouped in a matrix 𝐸𝐾, all embeddings 

representing the queries are grouped in a matrix 𝐸𝑄 and all embeddings representing 

the values are grouped in a matrix 𝐸𝑉 . In each matrix 𝐸𝐴, where 𝐴 ∈
{𝐾, 𝑄, 𝑉}, embeddings are placed on the rows, more exactly 1𝑠𝑡 row corresponds to 

the first embedding, 2𝑛𝑑 row to the second, etc.  

Matrices 𝐸𝑄 and 𝐸𝐾 and 𝐸𝑉  have the same number of columns (more exactly, the 

size of each embedding is the same), let it be 𝑑𝑚𝑜𝑑𝑒𝑙 . Let the number of rows for 𝐸𝑄 

be 𝑞 and the number of rows for 𝐸𝐾 and  𝐸𝑉 be 𝑘. In case encoder-decoder attention 

is used, matrices 𝐸𝐾 and 𝐸𝑉 are identical. In case self-attention is used, all three 

matrices: 𝐸𝐾, 𝐸𝑉,𝐸𝑄 are identical.  

 

The following steps are followed by the transformer to determine the contextualized 

representations: 

• A queries matrix 𝑄 are determined by multiplying the embeddings that 

represent the queries 𝐸𝑄 with the matrix representing the query layer: 𝑊𝑄. 

Same thing happens for the keys matrix 𝐾and values matrix 𝑉. Matrices 𝑊𝑄 

and 𝑊𝐾 have a number of columns equal to 𝑑𝑘, while matrix 𝑊𝑉 has a 

number of columns equal to 𝑑𝑣. Because these matrices 𝑊𝑄,𝑊𝐾 ,𝑊𝑉 change 

the number of columns (the size of the embeddings) of the resulted matrices: 

𝑄, 𝐾, 𝑉, they are also called projection matrices/projection layers. 

 

𝑄 = 𝐸𝑄 ·  𝑊𝑄 

         𝐾 = 𝐸𝐾 ·  𝑊𝐾                                               (8) 

𝑉 = 𝐸𝑉 ·  𝑊𝑉 

 

• The queries matrix 𝑄 (which contains one query per row) is multiplied with 

the transpose of the keys matrix 𝐾𝑇 (which contains one key per column) to 

obtain a matrix 𝑄 ·  𝐾𝑇 of attention scores. The attention score (𝑄 ·  𝐾𝑇)𝑖𝑗 is 

obtained by multiplying query on row 𝑖 in 𝑄 with key on column 𝑗 in 𝐾𝑇. This 



step resembles very much step i) from section 2.3.1., with the difference that 

now attention scores are calculated for all queries, in parallel by using matrix 

multiplications.  

 

• The values in the matrix 𝑄 ·  𝐾𝑇 are scaled, by being all divided to value 𝑑𝑘 

(the size of an embedding corresponding to a key or a query). [7] explains 

why this scaling is needed; the main idea is that with the increase of the 

embeddings’ sizes 𝑑𝑘, the values in the matrix 𝑄 ·  𝐾𝑇 become large, making 

the gradients small and thus, hindering the training process. 

 

• The Softmax function is applied to each scaled element in the matrix 𝑄 ·  𝐾𝑇. 

The result is a matrix α, containing the attention distributions (one per row for 

each query). This process corresponds to step ii) from section 2.3.1. 

 

𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄· 𝐾𝑇

√𝑑𝑘
)                                           (9) 

 

• The matrix 𝑌 of contextualized representations is determined by multiplying 

the matrix α of attention distributions with the values matrix 𝑉. This is 

analogous to step iii) from section 2.3.1. 𝑖𝑡ℎ row in 𝑌 contains the 

contextualized embeddings calculated for the 𝑖𝑡ℎ query.  

 

 

𝑌 =   𝛼 · 𝑉                                                 (10) 

 

Figure 15 highlights the elements described above, which form what we will call an 

attention layer. 

 



 

Figure 15. (Self-)attention layer in the transformer’s architecture - detailed steps 

We previously mentioned that the self-attention mechanism from the decoder is a 

masked type of attention. We will explain first why masking is needed and then how 

it is performed. 

 In the previous section, we mentioned that the decoder is autoregressive and that it 

generates the output word by word. Therefore, a word 𝑤 generated at a certain time 

step cannot be used to predict the words generated before him, as 𝑤 was created 

much later. In conclusion, we need to prevent the decoder form conditioning on 

future tokens.  

To do this, we apply a look-ahead mask 𝑀 to the matrix 𝑄 ·  𝐾𝑇 containing the 

attention scores, so that all future generated words are not influencing the predictions 

of each currently generated word. This mask is represented by a matrix with the 

same size as the matrix   𝑄 ·  𝐾𝑇, in which all values are equal to 0, except for the 

upper triangle (which doesn’t contain the diagonal), in which all values are −∞. The 

mask 𝑀 is summed up to matrix 𝑄 ·  𝐾𝑇, resulting in the final matrix containing the 

masked attention scores. Figure 16 depicts this final matrix resulted from the 

masking process. 

 

Figure 16. Example of a matrix containing masked attention scores 



2.3.3. Multi-head attention 

All the three types of attention mechanism used by the transformer (which are 

highlighted in red in Figure 12), are of type multi-head attention. Next, we will see 

what it is multi-head attention and why it is used in the transformer’s architecture. 

The attention layer presented in the previous section takes as input three matrices of 

embeddings (𝐸𝑄 for queries, 𝐸𝐾 for keys and 𝐸𝑉 for values) and outputs a matrix 

𝑌. This final matrix 𝑌 contains a set of 𝑞 contextualized representations (one 

representation for each query), each one having a size 𝑑𝑣. Even though the attention 

layer can model some dependencies between the embeddings, it is hard for a single 

attention layer to capture all dependencies between the tokens. For this reason, 

multiple attention layers/heads are used. These layers function separately from one 

another, having similar components at the same depths. They learn different aspects 

of the dependencies between the tokens.  

 Each attention head has its own projection matrices, which are not shared with the 

other attention heads. Let 𝑊𝑖
𝑄
,𝑊𝑖

𝐾 ,𝑊𝑖
𝑉be the projection matrices associated to the 

𝑖𝑡ℎ attention layer.  

Let ℎ be the number of attention heads. Let 𝑌𝑖 be the matrix containing the 

contextualized representations which are outputted by the 𝑖𝑡ℎ attention layer. The 

attention heads are able to computed the matrices 𝑌𝑖 in parallel; at the end of this 

process, all matrices 𝑌𝑖 are concatenated one to another forming the matrix 𝑌′ of size 

𝑞 ∗  (ℎ · 𝑑𝑣). The 𝑖𝑡ℎ row of 𝑌′ contains a contextualized representation size ℎ · 𝑑𝑣, 

corresponding to the 𝑖𝑡ℎ query.  

 𝑌′ is passed through a linear projection layer such that the final contextualized 

embeddings have a size equal to 𝑑𝑚𝑜𝑑𝑒𝑙 . More exactly, 𝑌′ is multiplied to a 

projection matrix 𝑊𝑂 of size (ℎ · 𝑑𝑣) ∗ 𝑑𝑚𝑜𝑑𝑒𝑙, resulting a final matrix 𝑌′′ of size 

𝑞 ∗ 𝑑𝑚𝑜𝑑𝑒𝑙 . 

Figure 17 from [1] and Figure 18 from [8] contain images that intuitively describe 

the multi head attention mechanism. 



 

Figure 17. Multi-head attention mechanism – image from original paper “Attention is all you need” 

 

 

Figure 18. Multi-head attention mechanism – detailed process 

 



2.4. Feed Forward Networks, layer normalizations and residual 

connections  

 

Figure 19. Highlights of the layer normalizations and residual connections (red) and of the feed forwards 

networks (blue) in the transformer’s architecture 

 

The last elements to talk about regarding the transformer’s architecture are the layer 

normalizations, the residual connections and the feed forward networks integrated 

in the transformer’s architecture. 

Figure 19 emphasises in red the layer normalizations along with the residual 

connections (“Add & Norm”) and in blue the feed forward networks. Figure 20 

(taken from [8]) describes the detailed structure of an encoder block, in which details 

regarding the above mentioned components are visible.  

Both the encoder and the decoder contain a fully connected feed forward network 

block, formed out of two linear layers with a ReLU transformation between them. 

These feed forward networks are used to further process the outputs from the 

attention mechanism, potentially adding more non linearity in the representations. 



The transformer’s encoder and decoder are composed of multiple complex layers, 

this indicating that the vanising gradient problem is likely to appear. Residual 

connections solve this problem, by connecting lower layers to higher layers such that 

the gradients are allowed to flow easier through the architecture. More exactly, each 

residual connection creates a shortcut that “skips” a certain block of the transformer 

(such as a feed forward network block or a multi-head attention block). The residual 

connections are implemented by adding the skipped block’s input to its output and 

passing it forward. 

Each residual connection is followed by a layer normalization procedure, which has 

the purpose to increase the transformer’s training performance by keeping the values 

the model works with in a range suitable for gradient-based training. The layer 

normalization procedure is given as input a set of embeddings 𝑋1, 𝑋2, … , 𝑋𝑛. Each 

embeddings is normalized by substracting the “mean embedding” μ from it and 

dividing it by the “standard deviation embedding” σ.  Formula for these two special 

embeddings are given below: 

       μ =
1

n
∑ 𝑋𝑖

𝑛
𝑖=1                                                         (10) 

σ = √
1

𝑛
∑ (𝑋𝑖 − μ)2𝑛

𝑖=1                                                 (11) 

Each embedding is finally multiplied by a parameter γ and summed up to a parameter 

β. Both γ and β parameters are learned during the trainng process. Equation (12) 

highlights the operations applied to an embedding 𝑋𝑖 during the layer normalization 

process: 

final Xi =  γ · (
Xi − μ

σ
) + β                                       (12) 

 

 

Figure 20. Detailed structure of an encoder block in the transformer’s architecture 



References 
 

[1] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems,  2017, 

 vol. 30. Accessed: Feb. 04, 2023. [Online]. Available: 

 https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html  

[2] Five reasons to embrace Transformer in Computer Vision. Accessed: Feb 04, 2023. [Online].  Available:  

 https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/five-reasons-to-embrace-

transformer-in-computer-vision/  

[3] Hugging Face library. Accessed: Feb 04, 2023. [Online]. Available: https://huggingface.co/docs/transformers/  

[4] Kazemnejad, Amirhossein, “Transformer Architecture: The Positional Encoding”, Accessed: Feb 04, 2023.                        

     [Online].  Available: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/   

[5] Abigail See, “Natural Language Processing with Deep Learning CS224N/Ling284 Lecture 8: Machine Translation,    

      Sequence-to-sequence and Attention”. Accessed: Feb 04, 2023. [Online].  Available:  

      https://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf  

 

[6] (https://stats.stackexchange.com/users/95569/dontloo), “What exactly are keys, queries, and values in attention 

mechanisms?”. Accessed: Feb 04, 2023. [Online].  Available: https://stats.stackexchange.com/q/424127  

[7] John Hewitt, “Natural Language Processing with Deep Learning CS224N/Ling284 Lecture 9: Self-     Attention   

 and Transformers”. Accessed: Feb 04, 2023 [Online]. Available: 

 https://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture09-transformers.pdf  

[8] Daniel Jurafsky & James H. Martin, “Speech and Language Processing. Chapter 10. Transformers and Pretrained 

 Language Models”. Accessed: Feb 04, 2023. [Online].  Available: https://web.stanford.edu/~jurafsky/slp3/10.pdf  

[9] Stanford CS224N: NLP with Deep Learning, Winter 2019, Lecture 14 – Transformers and Self-Attention. 

 Accessed: Feb 04, 2023. [Online]. Available: 

 https://www.youtube.com/watch?v=5vcj8kSwBCY&ab_channel=StanfordOnline  

[10] Lukasz Kaiser, “Attention is all you need; Attentional Neural Network Models | Machine Leaning Masterclass”                                  

      Accessed: Feb 04, 2023. [Online]. Available: https://www.youtube.com/watch?v=rBCqOTEfxvg  

  

 

 

            

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/five-reasons-to-embrace-transformer-in-computer-vision/
https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/five-reasons-to-embrace-transformer-in-computer-vision/
https://huggingface.co/docs/transformers/
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf
https://stats.stackexchange.com/users/95569/dontloo
https://stats.stackexchange.com/q/424127
https://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture09-transformers.pdf
https://web.stanford.edu/~jurafsky/slp3/10.pdf
https://www.youtube.com/watch?v=5vcj8kSwBCY&ab_channel=StanfordOnline
https://www.youtube.com/watch?v=rBCqOTEfxvg

